2. Creating a database

Designing the database SChema..........cooiiiiiiiiiiii e 1
Representing Classes, Attributes and ODbJeCtS ... 2
(D F= = Y/ =1 TSRS 5
Choosing the right fIeldSooo i 6
Implementing a table iN SQLooiiiii e 6
Inserting data into @ Alcoi i ————— 7
P M AN KOY S it e et e e e e e e e e e e e s e e e s e s et b e a e e et reraaaaaaaaaaaaaeaaaan 8
Defaults and CONSIIAINTSuuiiiiie i e e senre e e e e e 11
Representing relatioNShiPS ..o e e e e e e e e e 12
AREIING @ 1ADIE .. 22

Designing the database schema

As you have seen, once the data model for a system has been designed, you need to
work out how to represent that model in a database in a specific relational database
management system. This representation is sometimes referred to as the database
schema. In a relational database, the schema defines the tables, the fields in each
table, and the relationships between fields and tables. It also defines the way the data
is stored in each field.

No matter how carefully the data model has been designed, it is almost always
necessary to make modifications and refinements to turn it into a practical and efficient
database.

Once the schema has been designed, it can be implemented in the RDBMS.

NOTE

The process of designing a schema for a specific RDBMS is sometimes called physical
design. This contrasts with logical design, which is the process which deals with
gathering business requirements and converting those requirements into a model which
represents entities and their relationships in a way which is not specific to any particular
RDBMS.

28/10/11 JP

GCU
M1G505190: Introduction to Database Development ks

Representing Classes, Attributes and Objects

The following class diagram shows the User entity in the GCUTours data model

User

-name
-address
-username
-password
-datejoined

So how do we represent these entities in a database? We need to design a database
table for each class. A table is a set of data that is organized in horizontal rows and
vertical columns. The columns are identified by names. Columns in a data table are
very often called fields, and we will use that term from now on.

NOTE

Database designers often seem to have several words for the same thing, like column
and field. Sometimes there are very slight differences between the exact meanings, but
they are pretty much used interchangeably. Here is a list of some (nearly) equivalent
database terms:

Table = Relation (in fact, a relational database is a database made up of relations)
Column = Field

Row = Record = Tuple

We need to design a table for the User class. Designing a table requires you to:

e provide a name for the table
e provide a name and data type for each field in the table

Naming the table

It's quite common to give database tables plural names, so we’ll call the table Users.
(You don’t have to use this naming convention, but it is a useful way of making sure you
know when you're talking about the class and when you mean the database table.)

page 2

M1G505190: Introduction to Database Development

Defining the fields

Each attribute in the class becomes a field, and we usually match field names to
attribute names. We also need to specify the type of data to be held in that field. The
possible data types will depend on the RDBMS.

For example, the name field needs to hold a piece of text. We might also want to specify
a maximum number of characters which can be held in the field. Similarly, address
needs to hold text, and may need more characters than name.

In contrast, the datejoined field needs to represent a date.

Other common database data types include numbers (integers and numbers with
fractional parts) and binary data (for example, images).

The fields and datatypes for the Users tables could be:

name — text, field size=25
address — text, field size= 100
username — text, field size=10
password — text, field size=10
datejoined — date

The table design looks like this: the column headings are the field names, and there is a
data row for each user in the database.

Users
name address | username password datejoined |
Text data Text data Text data Text data Date/Time data
Text data Text data Text data Text data Date/Time data
Table data

Each row of data in the table represents a single user. In the model of the system, each
individual user is represented by an object which is an instance of the User class. A
database row contains the data representing the attribute values for an object.

page 3

GCU
M1G505190: Introduction to Database Development CN“*

Implementing the table

WebMatrix lets you create a new table and define the fields in Table Definition view, as
shown below:

O ek

Beports

You can then switch to Table Data view to see the data, and you can also enter new
data:

’ Rl £ utourswm - Microsolt WebMalrix
| 10 - S @ cricn g
d B] : . OH
New Uefvdon | Dsta Refresh Delete
Table fiow
e s [
«) goukoursem. sdf
o Tabes » “thin 2 5 Rl aus s 13OT0I000:...
7 tookings Armerige Wespucd 1459 America A... | amengo pass OHOGIZ01000:...
T Malngusts Bertolomins [148 Gokd Coard.. | bt - U320 0.
g Packages Jacques Cartir 156 Conda Cre... | chter pend IS0 00
O Tows [Cobrrbars 1492 Aerca A | chets et TAOT000 00:...
Davd Livingstone 102 Vo Fals | dave passed 12110,
I Cener Connextions Ferdearel Magelers 1530 P Hei... | erchy ol HOB0I0 0.,
Frandisco Pizamo 12 Lirna Lane fravkie. pasemcrd S L0f2005 0.
Fraeiucn et de Cor... |98 Areoes dveram lrorbie? e F3OR{000 0.,
Freys Stark. T3 Hadtvamat .. freys pasemcrd ENRAI000...
e Certe Bl 3 Tersa Verde . g et 7O[201000:...
Gvanni Cabaty INewfoundand... | pesbato e TAL00 0.
Husgeery et 12 Jobris Mo | gilbeet parssescrd 2220000,
e Hermands Cortes 24 Gugtenals G... | hennando pasemcrd 12010 00....
Herey Hutsin 145 Huchion e i pass ZUOSIZ000 00:...
D e James =23 45 Hawash Averwe | joock [l 16{ L2100 0.
s ek 42 Ausitria v | Rook? psieed TSI0RIZ000 00:...
Jusn Ponce de Laoh 179 Florida Ave... | jusn perted 12RO O0....
Reports Lonis ket &0 Miidioigd Shroed | kous v D220 0., @

NOTE

These notes will show you examples of database-related tasks you can do in WebMatrix,
but will not give detailed instructions on how to do these — you will find these details in
your lab exercise sheets.

page 4

Geu
M1G505190: Introduction to Database Development (

Data types

The set of possible data types for a field will depend on the RDBMS you are using. The
SQL standard specifies data types which are used by most RDBMSs, although there are
slight differences in the types supported and names of types by different RDBMSs. The
table below shows some common data types supported by SQL Server (this is NOT a
complete list):

Type Uses SQL type
Any characters, including nvarchar
numbers, letters and can set maximum length
Character punctuation, Usually specify e.g. nvarchar(25)
maximum length. max allowed length is 4000
characters
Numbers with no fractional part.
Typically used for things that int
Integer you can count. RDBMS often bigint
provides different sizes of
integer
numeric
. Typically used for things that can set maximum number of
Numbers with = —
fractional part you measure or calculate, or for dlgl_ts and Q|g|ts after the
amounts of money. decimal point

e.g. numeric(5,2)

Special formats for storing date

and time values. Can be used in datetime
calculations, e.g “how long

since...”

Dates and times

See http://msdn.microsoft.com/en-us/library/ms172424%28v=sql.100%29.aspx for
a full list of SQL Server Compact data types.

Why are data types important?

A character field can contain pretty much anything — words, numbers, even dates. So
why use any other data types? Here are three advantages of using well-chosen data

types:

e Constraining data — for example, if you want to make sure that a field can only
contain numbers, then using a numeric type means that the database will check
all data entered in the field, and will prevent non-numeric data being stored.
Similarly, date fields will only allow valid dates to be entered.

e Ordering — you might want to sort or order your data, and numbers or dates in

character fields will probably not be sorted in the order you would want — can you
think why?

page5

G
M1G505190: Introduction to Database Development (

e Calculations — you may want to do things like add up a field of numbers to get a
total, or figure out how many days between two dates. These calculations will
only work properly if the data type is correct.

Additional constraints and default values

Sometimes you might want to prevent data being entered that is valid as far as the field
data type is concerned. For example, you might want to make sure that the value of
datejoined in the Users table is in 2007 or later. You can do this by adding a specific
check constraint on the field. You can also specify a default value which will be put
into a column if a row of data is stored with no value specified for that column. You will
see how to create check constraints and defaults later on.

Choosing the right fields

Using a table can be made a lot easier with a bit of thought about the fields in your table.
With the right choices, you can make it much easier to find and use the data. For
example, data in character fields can easily be ordered alphabetically. So what happens
if we order data in the name field of the Users table? We won’t get a very sensible order,
as the user’s full name is in a single field. Usually we want to sort people by last name.
Also, the current table is not very helpful if you want to search for a user by last name. A
good rule of thumb is that any data that you're likely to want to sort or search by should
be in a field by itself. We should really split name into two separate fields, firsthame and
lastname.

| firstname ‘ lastname | address | usernarns | password | datejoined |
Marco Pala 1 Silk Road rharco provdd 270852007
»

“asco da Gama 1460 Hope Stre vasco provdd 280852007

Implementing a table in SQL

All RDBMSs allow you to create a table and define its fields using an SQL command.
You can write SQL by creating a new query in WebMatrix. The Users table could be
created with the following SQL. Each field is specified with its name followed by its data

type.

CREATE TABLE Users (
firstname nvarchar(10),
lastname nvarchar(15),
address nvarchar(50),
username nvarchar(10),
password nvarchar(10),
datejoined datetime

)5

page 6

M1G505190: Introduction to Database Development

Inserting data into a table

In WebMatrix you can insert data in datasheet view. You can also create user-friendly
forms to allow non-expert users of your database to enter data. Another way of entering
data into any RDBMS, is to use - guess what — SQL. The following SQL statement adds
a new row of data into the Users table:

list of field names

INSERT INTO Users
(firstname,lastname,address,username,password,datejoined)

VALUES

('Ferdinand', 'Magellan', '1520 Pacific Heights', 'ferdy', 'pwd',

onl il _/ list of values —in same order as field names

As long as the VALUES list has values for all the fields, in the same order as in the
original CREATE TABLE statement, then you can miss out the list of fields.

INSERT INTO Users

VALUES

('Ferdinand', 'Magellan', '1520 Pacific Heights', 'ferdy', 'pwd’,
'2007-08-29"');

_ | firstname | lastname | address | usemame | password | datejoined |
arco Pala 1 Silk Road marca] 270852007
da Gama 1460 Hope Stre vasco pvd 28/05/2007
erdinand Magellan 1520 Paciic He ferdy pwd T «—— new row added
*
NOTE

You are probably wondering why on earth you would want to use SQL to insert data (or
to query data) — surely it’s much easier just to type data in an Access datasheet? It is
worth learning the SQL way, though. If you know SQL you can work the same way with
any RDBMS. Also, a database may be part of an enterprise application, and the data
may be inserted through, for example, a web page. The application will typically use an
SQL statements to get data from a web form into the database.

NULL values

What if we miss out some of the fields when inserting a new row, like this (note that the
list of fields and list of values still match):

INSERT INTO Users
(firstname,lastname,username,datejoined)

VALUES

('Ferdinand', 'Magellan', 'ferdy', '2007-08-29');

page 7

M1G505190: Introduction to Database Development

| firstname | lastname | addre | usename | password | datejoined |
| * Marco Palo 1 Silk Road mpalg pagswd 270872007
+ \/asco daGama 1460 Hoge Street vdagama Eassword 25/08/2007
+ Ferdinand Magellan ferdy 29,08/2007 . .
> = = NULL fields in new row

The row is added, with the missing fields left empty. We say the value of these empty
fields is NULL.

You can also set fields to have a NULL value explicitly:

INSERT INTO Users
(firstname,lastname,address,username,password,datejoined)
VALUES

('Ferdinand', 'Magellan', NULL, 'ferdy', NULL, '2007-08-29');

Often you don’t want to allow a field to ever be left empty. You probably want to
make sure, for example, that every user has a password. You make sure that any field in
a table must contain a value by adding a NOT NULL constraint with the words NOT
NULL after the SQL field definition, for example:

password Text(10) NOT NULL,

You can also set the Allow Nulls property to False in table Definition view:

H password nvarchar False
Hi datejoined datetime True

E Column Properties

Allow Mulls False
Data Tvpe nvarchar
Defaulk Yalue

Is Primary Kew? False
Length 10

Now the database will not allow the INSERT to add a new row to the table.

Primary keys

What do you think will happen if two users with the same name are added to the Users
table? We need to be able to tell them apart in some way, otherwise we may end up
booking a holiday for the wrong person.

It is almost always necessary to ensure that every row in a table is uniquely identified —

there shouldn’t be two identical records in a table. This is done by defining a primary
key for each table. A primary key is a field, or a combination of fields, that is

page 8

GCU
M1G505190: Introduction to Database Development iyt

guaranteed to have a unique value for every row in the table. The database will not allow
new row to be added if the value or values of its primary key match a row which already
exists in the table.

So what will we choose as the primary key for the Users table? What about firsthame?
No, it is likely that there will be users with the same first name. The same applies to
lastname. We could use (firstname, lastname), a combination of firstname and lastname,
but there could easily be several users with the same full name. What about (firstname,
lastname, address)? This looks more promising, but what if there are a father and son
with the same name, living at the same address — we might think it's unlikely but we
can’t ignore the possibility.

For this table, two better possible choices would be:

e use the username field, so that every user needs to have a unique username
e add an ID field to the table specifically for the purpose of identifying each row

username is probably a good choice here as this particular table has an existing field
which should contain a unique value in each row. However, many tables don’t have an
obvious candidate like this, and an ID field is the best choice. For example, there will be
a table in this system to store bookings, and that table should probably have a bookingID
field to give every booking a uniqgue number.

NOTE

You are probably used to seeing numbers in everyday life which are the values of ID
fields in database tables behind the scenes — for example customer numbers, order
numbers, student numbers, and so on.

page 9

Geu
M1G505190: Introduction to Database Development (

Defining a primary key

You can define a primary key in WebMatrix table Definition view. In the figure below, the
username field is being defined as the primary key by setting Is Primary Key? to true,
After doing so, a key symbol appears beside it. You can select more than one field for
the primary key.

Tpusername nvarchar False
E password nvvarchar False
E datejoined daketime True

H Column Properties

Al Mulls False

Draka Type nvarchar
Defaulk Yalue

Is Primary Key? True
Lenagth 10

You can also define the primary key in SQL when you create the table, as shown in the
example below. The brackets after PRIMARY KEY can contain one or more field names,
separated by commas if there is more than one.

CREATE TABLE Users (

firstname nvarchar(10) NOT NULL,
lastname nvarchar(15) NOT NULL,
address nvarchar(50) NOT NULL,
username nvarchar(10) NOT NULL,
password nvarchar(10) NOT NULL,
datejoined datetime NOT NULL,
PRIMARY KEY(username)

)s

Data type for primary key

Fields of any data type can be used for the primary key. It is common to use either
integer or text fields.

Most RDBMSs have a special data type intended for ID fields. In SQL Server it is called
the IDENTITY type. A table can have only one identity field, which holds an integer value
which is set automatically by the database when a new row of data is added to a table.
The value set is always unique, and is one more than the largest value already in the
database. The figure below shows the Users table with a userID field added as the
primary key instead of username and defined to be an identity field using Is Identity?

page 10

M1G505190: Introduction to Database Development

T userID bigint False
=] firstname rearchar False
=] lastname nvarchar False
=] address nvarchar False
=| username rearchar False
E password nvarchar False
E datejoined daketime False

E Column Properties

Data Twpe bigint
Default Yalue
Is Identity?

Is Primaty Kew? True

You can also define the identity field using SQL.:

CREATE TABLE Users (
userID bigint IDENTITY,
firstname nvarchar(10) NOT NULL,
lastname nvarchar(15) NOT NULL,
address nvarchar(50) NOT NULL,
username nvarchar(10) NOT NULL,
password nvarchar(10) NOT NULL,
datejoined datetime NOT NULL,
PRIMARY KEY(userID)

)s

When you use an SQL INSERT INTO statement to add a row to a table with an identity
field, you should leave the identity field out of the list of fieldnames AND the list of
values. The database will automatically set the field value.

Defaults and constraints

You can define default values and check constraints in SQL. The following version of the
SQL statement to create the Users table sets a default password value, and prevents
any values being inserted for datejoined which are earlier than a specified date. Note
that the constraint should be given a name. A common convention for a check constraint
is to use the pattern:

CHK_<table name>_<field name>

page 11

M1G505190: Introduction to Database Development

CREATE TABLE Users (

userID bigint IDENTITY,

firstname nvarchar(10) NOT NULL,

lastname nvarchar(15) NOT NULL,

address nvarchar(50) NOT NULL,

username nvarchar(10) NOT NULL,

password nvarchar(10) DEFAULT('password'),

datejoined datetime NOT NULL,

PRIMARY KEY(userID),

CONSTRAINT CHK_Users_datejoined CHECK(datejoined > '2007-01-01"')

)5

NOTE

The check constraint in the above SQL statement will work in the full version of SQL
Server. However, SQL Server Compact does not support check constraints.

Representing relationships

Entities in a data model rarely exist by themselves. The entities in the GCUTours class
diagram are all related to other entities. For example bookings are related to tours and to
users. It wouldn't make sense to create a booking for a tour that didn’t exist, or for a user
that didn’t exist. Relationships in a database can prevent that sort of invalid data from
being stored — this is known as enforcing referential integrity.

Relationships are defined in the data model as one-to-one, one-to-many or occasionally
many-to-many associations. So how do we make these work in a database schema?
Let's look at two related entities with a one-to-many association, shown in the class
diagram below:

Package
-location
_name Tour
-description -departuredate
-adultprice -offer
-childprice 1.1 0.*
-departure

e Package — a holiday package, such as the “Western Adventure” holiday,
including information about the destination and the activities on holiday

page 12

GCU
M1G505190: Introduction to Database Development iyt

e Tour — a holiday tour, which is related to a specific package. A tour includes
information on departure dates and any discounts offered on the standard
package price. There can be many tours (with different dates and special offers)
for the same package — for example there might be four separate “Western
Adventure” tours in a year.

First, we need to design two tables to represent these classes, Packages and Tours.
Each table should have a primary key, and we’ll use ID fields for these. The figure below
shows these tables in table Definition view:

Table - {gcutourswm.sdf].Packages Table - [gcutourswm,sdf).Tours

Calumn Name Data Tvpe Allow Nulls Calumn Mame Dakta Type Allovs Mulls
&packagelD ink False S tourID int False

=] location rivearchar True =] departuredate datetime True

H packagename rvarchar True =] offer numeric True

El description nkexk True El packagelD ink True

H| adulkprice TAONEY True

= childprice money True

H| departure rvatchat True

THINK ABOUT IT...

We could have used the name field as the primary key for Packages — can you think why
that might not be a good choice?

Foreign keys

There is nothing yet in either table to say which tours are connected to which packages.
We need to add a field to one table which will make that connection. This field will be a
foreign key field.

Which table should contain the foreign key field? Generally, in a one-to-many
relationship, the foreign key field will be in the table at the ‘many’ end of the relationship.
In this example, this is the Tours table.

What should the foreign key field in Tours contain? Well, it needs to be some value that
uniquely identifies a row in the Packages table. As you have learned, that is exactly
what the primary key of Packages does. As a general rule:

the foreign key field of a row in the table at the many end of the relationship
should contain a value matching the value of the primary key field in one
row of the related table

In other words, Tours should have a field matching the packagelD field in Packages. The

figure below shows some data in both tables. The foreign key field has been called
packagelD and is of type int - this matches the data in the primary key field in Packages.

page 13

GCU
M1G505190: Introduction to Database Development ks

The figure below shows some data in these tables with the relationship defined in this
way. Note that there are several rows in Tours which match the same row in Packages.

Tours
tourlD | departuredate | duration | ofer | packagel
| 1 01/03/2008 2 18
| 2 (05/06/2008 2 a
| 3 12/02/2008 2 10
| 4 0140372008 3 20
— St : - packagelD in Tours matches
_] 7 0105008 3 Enl packagelD in Packages
| il 12/02/2008 4 a
Packages
| packagel fcation | name | description | adultprice | childprice | departure |
%A Western Adven’ A typical tour is £1,493.00 £999.00 Glasgow
sia Roof of the Wor Mew this year i £1 55900 £1,099.00 London Gatwict
3 Europe Alpine Action | There is advent £899.00 £549.00 Glasgow
4 Australia Reef and Outba There is no sho £2.199.00 £1,749.00 Manchester

Referential integrity

The foreign key makes sure that we can’t create a tour for a package that doesn’t
exist. If we tried to insert a new row in Tours with packagelD = 20, for example, the
database wouldn't allow it because there is no matching row in Packages.

What if we insert a row into Tours with a NULL in packagelD? This will work, as the
foreign key relationship only ensures that we can’t have a value that doesn't exist in the
other table. If we want to make sure that any new tour MUST match an existing
package, then we can set the packagelD field in Tours to be NOT NULL.

Should you make a foreign key field NOT NULL? What is the effect of doing do?

e NULL allowed: a Tour can be created and assigned to a package later
e NOT NULL: a tour must be assigned to a valid package at the time it is created

THINK ABOUT IT...

Which do you think is the right choice here? Can you think of another situation where
you would choose differently?

page 14

Geu
M1G505190: Introduction to Database Development (

Defining relationships

WebMatrix has a graphical tool for defining relationships. The New Relationship
window lets you choose a pair of tables and select which fields to use as the foreign key
in one table and as the related primary key in the other. You can then view relationships
— the figure below shows the relationship between Packages and Tours:

View Relationship

Foreign Key Table: Primary Key Table:

E Ee

As always, we should look also at the SQL version. The same relationship would be
defined by including the following lines in the CREATE TABLE statement for Tours:

packageID int NOT NULL,
FOREIGN KEY(packageID) REFERENCES Packages(packageID)

Optionally, you can give your foreign key a hame. A common convention is to use the
pattern:

FK_<table with foreign key field>_<table with related primary key field>

A foreign key is an example of a constraint, and you name it by setting the name of the
constraint:

packageID int NOT NULL,
CONSTRAINT FK_Tours_Packages
FOREIGN KEY(packageID) REFERENCES Packages(packagelD)

If you don’t name your keys, the database will give them names which it chooses.

page 15

M1G505190: Introduction to Database Development

Relationships with multiple fields

What if the primary key of the related table contains more than one field? For example,
instead of creating the packagelD field in Packages, we might have used name and
location together as the primary key.

PRIMARY KEY(name, location)

The foreign key in Tours would need to reference both fields. Note that Tours would
also need to have name and location fields defined:

name nvarchar(50) NOT NULL,
location nvarchar(50) NOT NULL,
FOREIGN KEY(name, location) REFERENCES Packages(name, location)

When you look at the tables in the View Relationships window you see that both fields
are selected in each table.

The effect of defining this relationship is that each row in Tours must have a value of
name and a value of location matching those in a single row of Packages.

Other types of relationship

The example we have looked at is a one-to-many relationship, which is probably the
most common type. What about other kinds of relationships?

One-to-one

In this kind of relationship, pairs of rows in two tables are matched only to each other.
Exactly one row in one table is matched exactly to one row in the other table.

Let's see an example. GCUTours might have another database to keep information
about its staff. The data model has an Employee entity and another entity to represent
the details of an employee’s pay (NI number, salary grade). A PayDetail belongs
exclusively to one Employee, who can only have one PayDetalil.

Employee PayDetail
-employeelD -NatinsNumber
-firstname

-salarygrade
-lastname 1 1

A one-to-one relationship like this can usually be implemented with a single table with
fields representing the attributes of both entities. Each row contains an employee and
the related pay details. There is little need to have two separate tables here.

page 16

M1G505190: Introduction to Database Development

Employees
employeslD | firstnarme | lastname |Nat|nsNumber| salarygrade |
1 3 llison MNEB 987654
| Steve Ballmer
I Marte Mickos A 99857
Employee PayDetail

A more complicated example of one-to-one

There are some situations where there is a one-to-one relationship between entities
which really do belong in different tables. Let's say the staff database has tables for
Employees and Departments. Each department has one manager, whose details will be
in the Employees table. One employee can only be manager of one department, so
this is a one-to-one relationship.

The relationship is implemented in the same way as a one-to-many relationship, with a
foreign key. Here, the manager field in Departments matches the employeelD primary
key in Employees.

Departments Employees
| |departmentnarm| manageO | | employeele=k, firstname | lastname
1 +

+ Sales k;%rry Ellisan
+|Finance + teve Ballmer
+ HR 3 + 3 Marten Mickos

Note that as this relationship matches one employee to one department, each
employeelD value should appear once only in the manager field in Departments. This
can be ensured by either:

e Making manager the primary key of Departments, as well as being a foreign key

manager int PRIMARY KEY,
FOREIGN KEY(manager) REFERENCES Employees(employeeID)

e or, making manager unique, without it being the primary key — a unique
constraint is similar to a primary key, except that there can be more than one
unique constraint in a table, but a table can have only one primary key (although
the primary key can contain more than one field as you have seen)

manager int UNIQUE,
FOREIGN KEY(manager) REFERENCES Employees(employeelD)

page 17

GCU
M1G505190: Introduction to Database Development ks

NOTE

Notice from this example that the name of a foreign key field does not have to be the
same as the name of the referenced primary key field.

We could equally well have chosen to put the foreign key field in Employees, so that it
had a field called manager_of? However, most employees would not be managers, so
the manager_of field would be null for most rows of the table, wasting storage space.

THINK ABOUT IT...

1.There could be another relationship between these tables, because employees work
for departments. What kind of relationship is this and how would you implement it?

2. The Employee and PayDetail example could be implemented with two tables and a
foreign key in a similar way. How would you do this? Can you think of any advantage
over a single table?

You've had a couple of options thrown at you here —let's sum up:

e You can usually represent a one-to-one relationship with a single table
containing the attributes of both entities

o |Ifthere is a good reason to use two tables, then you represent the relationship
with a foreign key field in any one of the tables, matching the primary key in the
other. The foreign key field must itself be unique.

Many-to-many

To understand this relationship, let's assume that GCUTours has decided to set up
some email lists for its users.

e each user can be subscribed to many mailing lists
e each mailing list can have many users subscribed to it

This is represented in a UML data model like this:

page 18

Geu
M1G505190: Introduction to Database Development (

User

-firstname
-lastname
-address -title

-username -description
-password 0.* 0.*
-datejoined

MailingList

However, relational databases do not allow direct many-to-many relationships between
tables. Using foreign keys would not work — a foreign key can only match one value in a
related table.

We need to represent the relationship by creating an additional table with which both
entities have a one-to-many relationship.

In this case the additional table could be called Subscriptions, and each row would
represent the subscription of one user to one mailing list. Note that we can also
include in this table further information about the subscription, for example the
subscription date.

Table - {geutourswm.sdf).Subscriptions

Table - (geutourswm.sdf).Users ;slumn Mame Data Type
TJusername nvarchar
Column Hame Data Type S mailinglistD ink Table - (geutourswm,sdf). MailingLists
%:I firstname rvarchar =] subscriptiondate datekime Calumn Mame Daka Type
=] lastriame nvarchar | % il .
=] address rivarchar j ?t?l ingistIl int .
=] title nvarchar
S username nvarchar
B password nwvarchar H| descripkion rvarchar
= datejoined datetime

The relationships between the additional table and each other table are set up in the
usual way for one-to-many relationships:

e Subscriptions has a foreign key field username which matches the username
field in Users. The data type is text.

e Subscriptions has a foreign key field mailinglistiD which matches the
mailinglistID field which is the primary key of Mailinglists. The data type is Long
to match the Counter primary key of Mailinglists.

The primary key of the Subscriptions table should be (username, mailinglistID) as each
user should be subscribed only once to a particular mailing list. As you can see from the
data shown, each username can be in the table several times, and so can each
mailinglistID — however, each combination is unique.

page 19

Geu
M1G505190: Introduction to Database Development C ~~~~~ o

The SQL to create the Subscriptions table looks like this:

CREATE TABLE Subscriptions(

username nvarchar(10) NOT NULL,

mailinglistID bigint NOT NULL,

subscriptiondate datetime NOT NULL,

PRIMARY KEY(username,mailinglistID),

FOREIGN KEY(username) REFERENCES Users(username),

FOREIGN KEY(mailinglistID) REFERENCES Mailinglists(mailinglistID)

)5

Users

firstname | lastname | address | ,oowname | password | datejoined |
| |Marco Polo 1 Silk Road polo passwd 27/08/2007
| |Wasco daGama 1460 W ma password 28/08/2007
__|Ferdinand Magellan 20 Pacific Heights | ferdy pwvd 29/08/2007

foreign key
lons

| usepiame | mailinglist!D | subscriptiondate|
AN 23/09/2007 . .
L] _>mr]<— this row represents mpolo subscribing to

011072007 the Travellers’ Tales list (ID=4)
1 02/10/2007
2 03/10/2007
g 04A10/2007 this user and this mailing list both appear
. in other rows, but not together
foreign key ’ 9
Majlinglists
| méQing\istID | title | description |
| |+ 1/ Special Offers | Details of the latest offers and discounts from GCUTours
| |+ 2 Travel Mews Mews tours, new destinations and news from the travel industry
| |+ ravel Tips Advice and tips from our travel experts to help you enjoy your holidays
L1+ avellers' Tales Our customers share their experiences and adventures
NOTE

In this example there was an obvious name for the additional table. Sometimes there is
no obvious meaningful name to call an additional table. In that case, it is usually named
with a combination of the names of the two related tables. In this case, that would
mean calling the table something like UsersMailinglists.

page 20

GCU
M1G505190: Introduction to Database Development iyt

Summary of GCUTours schema

The notation commonly used to summarise a database schema indicates table and field
names, and which fields are primary keys and which are foreign keys. The notation is as
follows:

TableName(primary key field(s), non key field(s), foreign key field(s))

Here's a summary of the main tables in the GCUTours schema:

Packages(packagelD, location, name, description, adultprice, childprice,
departure)

Tours(tourlD, departuredate, offer, packagelD)

Users(firstname, lasthame, address, username, password, datejoined)
Bookings(bookinglD, tourlD, username, adults, children, status)
MailingLists(mailinglistiD, title, description)

Subscriptions(username, mailinglistID, subscriptiondate)

Note that Subscriptions has a compound primary key whose fields are both foreign
keys (relating to two different tables).

The schema of the completed database can also be summarised in a database diagram,
created by SQL Server:

Users Bookings
firstnarne % bookingID
lastname tourID
address Username

¥ username adulks
password [children
datejoined skatus

f 8
: :

Subscriptions Tours

¥ username % kourlD

% mailinglist1D departuredate
subscriptiondate affer

packagell

j

MailingL ists Packages
7 mailinglist1e ¥ packagelD
title location
description packagename
description
adulkprice
childprice

departure
sales
tourpicurl

taurvidurl

page 21

M1G505190: Introduction to Database Development

A final thought on relationships

In an enterprise system, the same data model may be represented in different ways in
different parts of the system, for example by a relational database schema for long-term
storage and by Java classes for processing in memory. These representations deal with
relationships in very different ways:

e relational database — uses matching foreign and primary key fields
e Java classes — use object references, with no need for matching fields

This can get confusing — you need to make sure you use the right techniques for the
representation you are designing.

Altering a table

Sometimes you need to change the design of a table after it has been created, or even
after it has data in it. You can do this in table design view, or in SQL. The following SQL
adds a new field to the Users table. Existing rows will simply have a NULL value in that
field.

ALTER TABLE Users ADD email nvarchar(25)
The next example adds a primary key, which could be useful if we forgot to define it
when the table was created:

ALTER TABLE Users ADD PRIMARY KEY(username)

Finally, this example drops, or deletes, a field from the table:

ALTER TABLE Users DROP COLUMN datejoined

Dropping fields can be dangerous as the data in that field of every row will be deleted.

page 22

