

3. Getting data out: database queries

Querying .. 1
Queries and use cases ... 2
The GCUTours database tables .. 3
Project operations .. 6
Select operations .. 8
Date formats in queries .. 11
Aggregates .. 12
Grouping .. 14
Subqueries ... 16

Querying
There are two good reasons for using a database to store information. Firstly, as you
have seen, databases are very good at storing data in an accurate and consistent way (if
we take care with the design, anyway). The second reason is that they provide a very
efficient way to get out exactly the data you need.

A large database may have thousands or millions of rows in its tables, while you may
want to select only one, or a few specific data items – for example, to find the bookings
placed by a specific user, or to find only the users whose accounts are unpaid.

We get that specific information out of the database by querying. A query is a question
addressed to a database, usually written in a query language. For relational
databases, the standard query language is SQL.

Some database tools provide graphical interfaces for building queries. These tools
actually write the SQL for you behind the scenes, which is handy if you don’t know SQL.
However, it’s well worth learning SQL because you can use it to query any RDBMS.
Also, if you’re accessing a database from an enterprise application you usually need to
write some SQL.

08/11/11 JP

 M1G505190: Introduction to Database Development

 page 2

Queries and use cases
The questions we need to ask the database are related to the uses cases for the
system. A use case diagram for GCUTours is shown in the figure below.

A query selects only the subset of the data we actually need to carry out the actions of a
use case. Some of these use cases will obviously lead to queries. To carry out the
‘Show tours’ use case, we will need to query the database to find all the available tours.

Others are slightly less obvious. For example, ‘Sign in’ will need to query the database to
find the stored password for the user in order to check it matches the one which the user
types in.

NOTE

Other use cases, such as ‘Edit booking’ relate to updating and deleting data, which we
will look at later.

 M1G505190: Introduction to Database Development

 page 3

The GCUTours database tables

These notes use a version of the GCUTours database which has been populated with a
bit more data than you saw before. You can download this database, inside a WebMatrix
website, from your module website.

The tables and relationships in this database are summarised in the figure below:

We will only be using the Users, Bookings, Tours and Packages tables here. The data in
the tables is shown on the following pages – you can refer back to this as you read the
notes.

 M1G505190: Introduction to Database Development

 page 4

Users

Packages

 M1G505190: Introduction to Database Development

 page 5

Tours

Bookings

 M1G505190: Introduction to Database Development

 page 6

You have previously seen how to create a query in WebMatrix which allowed you to
write an SQL statement to create a database table. We will now look at SQL statements
which query the database to retrieve information.

The simplest situation is when all the data you want to get is in just one table. For now,
we’ll use the GCUTours database tables to illustrate the main types of query that you
can do on a single table.

Project operations
Project operations allow us to retrieve only the fields we are interested in. Let’s say
we only want to see the names (first and last) of all the users. We can write this query in
SQL as:

SELECT firstname, lastname
FROM Users

This query uses the following SQL key words:

SELECT – introduces the list of fields to be included
FROM – specifies which table to get data from

The result of executing this SQL in a query in WebMatrix is shown below:

 M1G505190: Introduction to Database Development

 page 7

The * operator

Using * after SELECT instead of a list of field names causes all available fields to be
included. The result of this query is that the entire contents of the table are shown.

SELECT *
FROM Users

Ordering

The results of any query can be sorted in order of the values in any field (or fields) by
using the ORDER BY key word at the end of the query. The following example orders by
the value of lastname, then by firstname if there are any identical values of lastname.
The ASC key word means sort in ascending order.

SELECT firstname, lastname, address
FROM Users
ORDER BY lastname, firstname ASC

Duplicate rows

Sometimes there are duplicate values in the fields included in a project operation (even
though each complete row is unique). Compare the following two queries, and note the
effect of the DISTINCT key word:

 M1G505190: Introduction to Database Development

 page 8

SELECT location
FROM Packages

SELECT DISTINCT location
FROM Packages

Select operations

Select operations allow us to retrieve just some of the rows. For example, we might
want to find the data stored about a particular user, identified by username. We use the
WHERE key word to specify the condition, or filter, which decides which row or rows to
retrieve.

SELECT *
FROM Users
WHERE username = 'mpolo'

Most queries in reality are a combination of project and select operations, for
example:

SELECT packageID, packagename, adultprice
FROM Packages
WHERE location = 'USA'

NOTE

If the value to be matched is text, it needs to be in single quotes. Numerical values are
not written in quotes.

 COMU114/M1G505190: Introduction to Database Development

 page 9

Types of condition in a Select operation

The last two queries retrieved data where a value in the database exactly matched the
specified condition because we used the = operator in the condition. There are other
operators we can use to match data in less exact ways. Here are some examples:

Find packages with adultprice greater than £1500 using the > operator

SELECT packageID, packagename, location
FROM Packages
WHERE adultprice > 1500

Other similar relative operators you can use are <, <=, >=, <> (not equal)

Find packages where the location starts with the letter A using the LIKE operator

SELECT packageID, packagename, location
FROM Packages
WHERE location LIKE 'A%'

% is the wildcard character, which matches any character. A% means A followed by any
other characters.

The underscore character _ matches a single character. A_ means A followed by any
single character.

Some RDBMSs also allow you to have wildcards which match characters within a
specified list or range

 COMU114/M1G505190: Introduction to Database Development

 page 10

More than one condition

Conditions in a Select operation can be combined using the AND and OR operators, as
shown in the following examples:

Find holidays located in Asia with adultprice less than £1500

We use the AND operator when both conditions must be true:

SELECT packageID, packagename, location, adultprice
FROM Packages
WHERE location = 'Asia' AND adultprice < 1500

Find all holidays in Asia or Europe

We use the OR operator when either condition may be true:

SELECT packageID, packagename, location, adultprice
FROM Packages
WHERE location = 'Asia' OR location = 'Europe'

Find holidays with adultprice between £1000 and £1500

We can use the AND operator with relative operators to match data within a range of
values:

SELECT packageID, packagename, location, adultprice
FROM Packages
WHERE adultprice > 1000 AND adultprice < 1500

 COMU114/M1G505190: Introduction to Database Development

 page 11

You can also use the BETWEEN keyword for this situation. This gives exactly the same
result as the previous query:

SELECT packageID, packagename, location, adultprice
FROM Packages
WHERE adultprice BETWEEN 1000 AND 1500

Date formats in queries

Dates are more complicated than most of the other data types, and it is important to
understand how your particular RDBMS interprets them.

The following query refers to a DateTime field:

SELECT firstname, lastname
FROM Users
WHERE datejoined > '1/1/2010'

This condition will return all rows with datejoined later than 1st January 2010. What if the
condition was this:

WHERE datejoined > '14/3/2010'

Or what about this:

WHERE datejoined > '3/14/2010'

It is likely that one of these will work and the other will cause an error. This may depend
on the way your computer is configured. 14 is not a valid month value, but 3 is, so the
first version represents a valid date in UK form (dd/mm/yyyy), while the second is valid
in the US form (mm/dd/yyyy).

What about this:

WHERE datejoined > '3/7/2010'

This will not cause an error as 3 and 7 are both valid month values. However, it may not
give you the answer you expect. You can even find that dates in queries are interpreted
as US dates, while the results are shown in UK format.

To be safe, you can specify dates in the ISO standard date format (yyyy-mm-dd). The
following condition ensures that you mean 7th March 2010:

WHERE datejoined > '2010‐03‐07'

 COMU114/M1G505190: Introduction to Database Development

 page 12

Aggregates

The queries you have seen so far retrieve data row by row. It can also be useful to be
able to ask questions which combine the data in more than one row into a single value.
For example, you might want to count the number of rows which match a condition, or to
add up all the values in a particular column of a table.

SQL provides aggregate functions, including COUNT, SUM, AVG, MAX and MIN, to allow
you to do queries like that.

Counting

The simplest aggregate query counts all the rows in a table, for example:

SELECT COUNT(*)
FROM Users

COUNT(*) simply means “count each record”.

The result of this query is the single number 30, as there are 30 users in the table.

It can be helpful to give the results of aggregate functions meaningful labels when they
are displayed, using the AS key word:

SELECT COUNT(*) AS NumberOfUsers
FROM Users

You can use a Select operation to count only some of the rows:

Count the number of Users who have joined since the beginning of 2010

SELECT Count(*) AS JoinedSince2010
FROM Users
WHERE datejoined > '2010‐01‐01'

As before, the DISTINCT key word can deal with duplicate values. For example, the
Packages table has 12 records, but only contains 5 different locations.

 COMU114/M1G505190: Introduction to Database Development

 page 13

Compare the following two queries, where we are counting the number of values in a
particular field rather than the number of complete records:

SELECT COUNT(location)
AS NumberOfLocations
FROM Packages

SELECT COUNT(DISTINCT location)
AS NumberOfLocations
FROM Packages

should give 5

Note that no actual result is shown for the second version – this use of DISTINCT is
standard SQL, but isn’t supported in SQL Server Compact!

Summarising

We’ll use the sales figures in Packages to demonstrate SQL summarising functions:

Find the total number of sales for all packages

SELECT SUM(sales) AS TotalSales
FROM Packages

Find the total number of sales for all packages to Asia

SELECT SUM(sales) AS TotalSales
FROM Packages
WHERE location = 'Asia'

Take care with aggregates

There are some common mistakes that people make when using aggregates. For
example, to find which package had the highest number of sales, and also list the name
of that package alongside its sales value, you might try this query:

SELECT packagename, MAX(sales)
FROM Packages

 COMU114/M1G505190: Introduction to Database Development

 page 14

If you run this, though, you’ll get an error message like this:

The reason is as follows:

• packagename has one value for each row of the table
• MAX(sales) has one value for the entire table

Think about the results you are actually asking this query to give you:

packagename Max(Sales)
Western Adventure 894
Roof of the World Explorer
Alpine Action
Reef and Outback Adventure
Trans-Siberian Express
Borneo Adventure
Amazon & Inca Adventure
Patagonia Trek
Colorado Winter Adventure
Glacier Expedition
Raft the Grand Canyon
Rising Sun Explorer

This can’t work! The result of a query must have the same number of rows in each
column, just like a table has. A simple rule to remember is:

all the fields or functions after the SELECT key word must have the same
number of values

You will see later on a better way of getting the information we were trying to get here.

Grouping
So far we have used aggregates to count or summarise an entire table, or a set of rows
matching a condition. It’s also very useful to group rows which have something in
common together, and to count or summarise each group. This is done using the
GROUP BY key word.

In the Packages table, there is a group of rows which refer to packages in Asia, another
group of packages in the USA, and so on. Let’s count the number of rows in each group.

12 rows

1 row

»

 COMU114/M1G505190: Introduction to Database Development

 page 15

Find the number of packages available in each location

SELECT location, COUNT(*) AS NumberOfPackages
FROM Packages
GROUP BY location

What about the numbers of values?

• location has one value for each group of rows (as we are grouping rows with
the same location together)

• COUNT(*) has one value for each group of rows (as aggregates are applied to
each group separately when the GROUP BY key word appears)

So the numbers of values in this query match up – so it works!

Why would the following NOT work?

SELECT location, packagename, COUNT(*) AS NumberOfPackages
FROM Packages
GROUP BY location

The packagename field causes the problem here – it has one value for each row of the
table, and the grouping by location has no effect on the packagename values.

Here is another example of grouping. This time we list the groups in order of the result of
the AVG function (denoted by the label AverageSales) for each group:

Find the average number of sales for each location and show the results in order of
popularity, most popular first

SELECT location, AVG(sales) AS AverageSales
FROM Packages
GROUP BY location
ORDER BY AverageSales DESC

 COMU114/M1G505190: Introduction to Database Development

 page 16

Applying conditions to groups

You saw earlier how to use the WHERE keyword to apply conditions to decide which
rows to retrieve. You can do the same with groups of rows using the HAVING key word.

Find the number of packages available in each location, only showing locations
beginning with the letter A

SELECT location, COUNT(*) AS NumberOfPackages
FROM Packages
GROUP BY location
HAVING location LIKE 'A%'

Subqueries
You saw the MAX function earlier. This function can be used like this:

Find the maximum number of sales for any one package

SELECT MAX(sales) AS MaxSales
FROM Packages

This query result isn’t very helpful, as it doesn’t tell us which package is the most
popular. We tried earlier to list the name of the most popular package along with its
sales earlier, but ran into problems doing so. We could, however, get that information by
using the result of the MAX(sales) query, 894, in another query:

SELECT packagename, sales
FROM Packages
WHERE sales = 894

It’s inconvenient to use two queries like this, so fortunately there’s a better way. In the
example below, the first query, which found the maximum value, is used as a subquery
for the second (outer) query. The subquery is in written in brackets:

 COMU114/M1G505190: Introduction to Database Development

 page 17

Find the name and number of sales of the most popular package

SELECT packagename, sales
FROM Packages
WHERE sales IN
 (SELECT MAX(sales)
 FROM Packages)

Here’s another example, this time a question which can be answered with grouping and
a subquery:

Find the locations where the highest sales for any package to that location is less than
the average of sales for all packages

We need to find the average of all sales before we can do a comparison:

SELECT AVG(Sales)
FROM Packages

This is the subquery. The outer query needs to find the maximum sales for each
location, so it needs to group by location. The maximum for each group needs to be
compared with the subquery result.

The full query is:

SELECT location, MAX(sales) AS [MaxSales] FROM Packages
GROUP BY location
HAVING MAX(sales) < ALL
 (SELECT AVG(Sales)
 FROM Packages)

Subqueries can also be useful if we want to get information from more than one table.
For example:

Find the full name of the user who made the booking with ID 4

The Bookings table simply identifies the user by username. The full name (firstname and
lastname) is in the Users table.

subquery – evaluated first,
gives answer 894 here

outer query – evaluated next,
uses answer from subquery
in comparison

 COMU114/M1G505190: Introduction to Database Development

 page 18

We can use a subquery to find which username is related to the booking with ID 4 in
Bookings, and then use the result of that to query Users for the full name.

SELECT firstname, lastname
FROM Users
WHERE username IN
 (SELECT username FROM Bookings
 WHERE bookingID = 4)

There is actually another way of getting information from more than one table, which you
will see in a later chapter.

