3. Getting data out: database queries

(O UT=] oY 1o Yo [TP U PP PP PR PRR 1
QUETTES ANT USE CASES ...uuuuiuiiiiiiiieeieeeeeeeeeeee e e e e e e e e et e e et e e ae e e e e e bbb aeasaeeeeeeeaeeaaaaaaaaaaaaaeaaaaas 2
The GCUTours database tables ... 3
oY [=To] Aol o] = 1A 0] o 1< SO T OO PRSP P PP PPPPRTO 6
STl [To o] o =T &= 11 0] K= P O O PP PP TP PP 8
Date fOrmMats iN QUETIES ..o iiiieiie ettt a e s e e e e e s st e e e e e e annnbeeeeaeeaans 11
F N o =T = UL PP 12
LT Lo TU] o112 o T OO OPPPPOPPRPTPRPTN 14
YU o Lo [U= =SOSR SSPR 16
Querying

There are two good reasons for using a database to store information. Firstly, as you
have seen, databases are very good at storing data in an accurate and consistent way (if
we take care with the design, anyway). The second reason is that they provide a very
efficient way to get out exactly the data you need.

A large database may have thousands or millions of rows in its tables, while you may
want to select only one, or a few specific data items — for example, to find the bookings
placed by a specific user, or to find only the users whose accounts are unpaid.

We get that specific information out of the database by querying. A query is a question
addressed to a database, usually written in a query language. For relational
databases, the standard query language is SQL.

Some database tools provide graphical interfaces for building queries. These tools
actually write the SQL for you behind the scenes, which is handy if you don’t know SQL.
However, it's well worth learning SQL because you can use it to query any RDBMS.
Also, if you're accessing a database from an enterprise application you usually need to
write some SQL.

os/11/11 JP

GCU
M1G505190: Introduction to Database Development Sk

Queries and use cases

The questions we need to ask the database are related to the uses cases for the
system. A use case diagram for GCUTours is shown in the figure below.

Show bookings

User

Edit booking
Delete booking

A query selects only the subset of the data we actually need to carry out the actions of a
use case. Some of these use cases will obviously lead to queries. To carry out the
‘Show tours’ use case, we will need to query the database to find all the available tours.

Others are slightly less obvious. For example, ‘Sign in’ will need to query the database to
find the stored password for the user in order to check it matches the one which the user

types in.

NOTE

Other use cases, such as ‘Edit booking’ relate to updating and deleting data, which we
will look at later.

page 2

GCU
M1G505190: Introduction to Database Development ks

The GCUTours database tables

These notes use a version of the GCUTours database which has been populated with a
bit more data than you saw before. You can download this database, inside a WebMatrix
website, from your module website.

The tables and relationships in this database are summarised in the figure below:

Users Bookings
firstniame % bookingID
lastname tourID
address username

¥ username adults

o —
password B children
datejoined status
f g
4

Subscriptions Tours

® username ? towrlD

? mailinglistIC departuredate
subscriptiondate offer

packagell
j

MailingLists Packages

@ malinglistiD ¥ packagelD
itle: location
description packagename

description
adulkprice
childprice

departure
sales
tourpicur]

tourvidurl

We will only be using the Users, Bookings, Tours and Packages tables here. The data in
the tables is shown on the following pages — you can refer back to this as you read the
notes.

page 3

M1G505190: Introduction to Database Development

Users

firstname lastname address username password datejoined

Abu Abdullab Ibn Battuta 2 Silk Road abu pass 13072010 00:00:00

Amerigo Wespucei 1499 America ... | amerigo pass 09¢06/2010 00:00:00

Eartalemeu Dias 1481 Gold Coast... |bart passind 037042008 00:00:00

Jacques Cartier 156 Canada Cre... |carkier prd 15/03/2010 00:00:00

Christopher Columbus 1492 America A... |chris AELL 24072009 00:00:00

David Livingskone 1852 Yictoria Falls | dawe passiud 12/11/2008 00:00:00

Ferdinand Magellan 1520 Pacific Hei... |Ferdy pid 29/08/2010 00:00:00

Francisco Pizarro 12 Lima Lane frankie password 05/10/2009 00;00:00

Francisco Vasguez de Cor.., |98 Arizona Avenue |Frankiez passwd 230082009 00;00:00

Freva Stark. 19 Hadhramaut ... |freya password 231042010 00:00:00

Gaspar Corke Real 23 Terra Verde ... |gaspar AL 17/05/2010 00:00:00

Giavanni Cabato 3 Mewfoundland... |gcabota pid 14f02/2009 00:00:00

Hurmphresy Gilbert 12 5t John's Road | gilbert password 12/02{2010 00:00:00

Hernando Corkes 24 Guatemala G... |'hernando password 12f01/2010 00:00:00

Henry Hudson 145 Hudson River | hudson pass 21J05/2009 00:00:00

James Cook 45 Hawaii Avenue | joook, passw 1612 {2008 00:00:00

James Cook 42 pustralia Ave... | joookz passwd 250062009 00;00;00

Juan Ponce de Leon 139 Florida Awve... |juan pword 12/04/2010 00:00:00

Louis Joliet: 39 Mississipi Street | louis pass 02§12{2009 00:00:00

Louise Bovyd 99 Greenland Ga... |louise pwd 12{12}2009 00:00:00

Lucas Wasquez de Avllon |26 Chesapeake ... lucas pid 07/03/2010 00:00:00

Marco Folo 1 Silk Road mpolo passiud Z7/08/2010 00:00:00

Panfilo de Marvaez 76 Havana Heights | panfilo password 24/08/2009 00:00:00

Pedro Cabral 12 Brazil View pedro pword 21J05/2010 00:00:00

Roald Amundsen 65 Antarctic Ave... |ramundsen AL 15/05/2009 00:00;00

Richard Grenville 19 Roanoke Foad | ricky pwd 30006 2009 00;00;00

Robert Scokt 1912 Discovery ... | scott pwrd 12/03/2009 00:00:00

Samuel de Champlan 1234 Queber G... |sdechamp password 28§09/2010 00:00:00

Yasoo daGama 1460 Hope Street | vwdagama password 28/08/2010 00:00:00

Wasco Munez de Balboa |25 Panama Place | wdebalboa passind 24/08/2010 00:00:00
Packages

packagelD location packagenams description adultprice childprice departure sales
1 usa Western Advent... |A bypical bour is ... |1499.00 999,00 Glasgow 314
2 Asia Roof of the Worl... |Mew this vear is .., |1599.00 1099.00 London Gatwick 126
3 Europe Alpine Action There is adwent,.. |§99.00 549,00 Glasgow 739
4 Australia Reef and Qutba.., |Thereis no shor,,, |2199.00 1749.00 Manchester 223
5 Asia Trans-Siberian E,., |Expetiencethe .., | 1192,00 799,00 London Heathrow | 168
[Asia Borneo Adventure | A 15 day safari ... |1699.00 1299,00 Manchester 254
7 South Ametica Amazon & Inca ... |AnAmazon vow,.. 199900 1499,00 London Heathrow | 433
& South Ametica Patagonia Trek, The southern re... |1599.00 1399.00 Glasgow 121
E (I Colorado Winter,.. |When winter call.,, |1099.00 749,00 Manchester 567
10 Eurcpe Glacier Expedition |Based in Eidfjord... |2990,00 1990,00 Glasgow a0
11 usa Raft the Grand ... |It has taken the ... |799.00 499,00 London Gakwick. 394
12 Asia Rising Sun Explorer |From the neon li... |1399.00 99,00 London Heathrow | 334

page 4

GCU
M1G505190: Introduction to Database Development (\“;:‘;'.‘.‘.1"“"‘“"

Tours

bourID departuredate offer packagell

1 01/03/2011 00:00:00 |15 1

Z 05/06/2011 00:00:00 |0 1

3 0z2/09/2011 00:00:00 |10 1

4 02/09/2011 00:00:00 |10 1

5 01/03/2011 00:00:00 |20 z

B 05/06/2011 00:00:00 |0 z

7 01/03{2011 00:00:00 |25 3

g 01/03/2011 00:00:00 |25 3

9 01/03/2011 00:00:00 |30 4

10 01/03/2011 00:00:00 |30 4

11 01/03/2011 00:00:00 |30 4

1z 02/09(2011 00:00:00 |0 4

13 01/03/2011 00:00:00 |15 5

14 01/06/2011 00:00:00 |5 5

15 01/08/2011 00:00:00 |0 5

16 058/03/2011 00:00:00 |5 3]

17 01f02/2011 00:00:00 |25 7

15 01/08/2011 00:00:00 |10 7

19 01/05/2011 00:00:00 |0 g

0 01/02{2011 00:00:00 |0 9

z1 01/03/2011 00:00:00 |15 9

22 01/05/2011 00:00:00 |10 11

23 01/08/2011 00:00:00 |5 11

24 01/07/2011 00:00:00 |0 11

25 01/08/2011 00:00:00 |0 11

26 01/07(2011 00:00:00 |0 1z

Bookings

bookingID: kourID Username adulks children status

1 1 mpolo H H tickets sent

b4 5 mpolo 1 a tickeks not sent
3 14 mpolo 2 2 tickets not sent
4 4 vdagama 4 a tickeks sent

5 3 vdagania 2 i} tickets not sent
-] 10 Ferdy z 3 tickets not sent

page5

GCU
M1G505190: Introduction to Database Development (:ﬂr-“

You have previously seen how to create a query in WebMatrix which allowed you to
write an SQL statement to create a database table. We will now look at SQL statements
which query the database to retrieve information.

The simplest situation is when all the data you want to get is in just one table. For now,

we’ll use the GCUTours database tables to illustrate the main types of query that you
can do on a single table.

Project operations

Project operations allow us to retrieve only the fields we are interested in. Let's say
we only want to see the names (first and last) of all the users. We can write this query in
SQL as:

SELECT firstname, lastname
FROM Users

This query uses the following SQL key words:

SELECT —introduces the list of fields to be included
FROM - specifies which table to get data from

The result of executing this SQL in a query in WebMatrix is shown below:

S veme | Tabe @ 7 fire Help
H T R
el e Skart e 3
) B B HE B ©L
......... o stp
My Publish Run New M e Mew Execube Migrate Instal
Sites = =) Restart Dakabase Conmeckion Table Query
Site Database Query SOL Server
. {geutourswm,sdf).SQLGQuery 1
“ J-‘gcutourswm SELECT firstname, lastnsme
4y goukourswn,sdf FROM Users
4 Tables
= Bookings
= MailingLists

[subscriptions
= Tours
[users firstname lastname
= Other Cannections » Abu Abdullah
Amerigo Wespucci =
g Bartolemey Dins
) Jacques Cattier
Site Christopher Columbus
David Livingstone
Ferdinand Magelan
Francisco Pizarro
Francisco Wasquez de Cor...
Freya Stark.

page 6

Geu
M1G505190: Introduction to Database Development (

The * operator

Using * after SELECT instead of a list of field names causes all available fields to be
included. The result of this query is that the entire contents of the table are shown.

SELECT *
FROM Users

Ordering

The results of any query can be sorted in order of the values in any field (or fields) by
using the ORDER BY key word at the end of the query. The following example orders by
the value of lastname, then by firstname if there are any identical values of lasthname.
The ASC key word means sort in ascending order.

SELECT firstname, lastname, address
FROM Users
ORDER BY lastname, firstname ASC

firstname lastname address
Amundsen 65 Ankarctic Ave, .,
Louise Boyd 99 Greenland Ga...
Giovanni Cabota 3 Newfoundland. ..
Pedro Cabral 12 Brazil View
Jacques Cartier 156 Canada Cre...
Christophar Columbus 1492 Ametica A...
James Cook 45 Hawaii Avenue
James Cook 42 Australia Ave...
Gaspar Corte Real 23 Terra Verde ...
Hernanda Cortes 24 Guatemala G...
Wasco daGama 1460 Hope Street
Samuel de Champlan 1234 Quebec Q...
Panfilo de Marvaez 76 Hawana Heights
Bartolemeu Dias 1481 Gold Coast,.,
Hurmphresy Gilbert 12 5t John's Road

Duplicate rows

Sometimes there are duplicate values in the fields included in a project operation (even
though each complete row is unique). Compare the following two queries, and note the
effect of the DISTINCT key word:

page 7

Geu
M1G505190: Introduction to Database Development (

SELECT location SELECT DISTINCT location
FROM Packages FROM Packages
location location
US4 Asia
Asia Australia
Europe Europe
Australia South America
Asia USA
Asia

South America
South America
USA,

Europe

USA

Asia

Select operations

Select operations allow us to retrieve just some of the rows. For example, we might
want to find the data stored about a particular user, identified by username. We use the
WHERE key word to specify the condition, or filter, which decides which row or rows to
retrieve.

SELECT *
FROM Users
WHERE username = 'mpolo'

Firstname lastnarne address usernanme passward datejoined

m Folo 1 Silk Road mpolo passiad Z7I0812010 00:...

Most queries in reality are a combination of project and select operations, for
example:

SELECT packageID, packagename, adultprice
FROM Packages
WHERE location = 'USA'

packagell packagename adultprice
Western Advent.,, |1499
9 Colorado Winker... |1099
11 Raft the Grand ... |799
NOTE

If the value to be matched is text, it needs to be in single quotes. Numerical values are
not written in quotes.

page 8

Geu
COMU114/M1G505190: Introduction to Database Development (

Types of condition in a Select operation

The last two queries retrieved data where a value in the database exactly matched the
specified condition because we used the = operator in the condition. There are other
operators we can use to match data in less exact ways. Here are some examples:

Find packages with adultprice greater than £1500 using the > operator

SELECT packageID, packagename, location
FROM Packages
WHERE adultprice > 1500

packagell packagename location
_ Roof of the \Warl,., | Asia
Reef and Outba... |Australia
Borneo Adventure | Asia

Amazon & Inca ... |South America

=" AR Y

Patagonia Trek South America

10 Glacier Expedition | Europe

Other similar relative operators you can use are <, <=, >=, <> (not equal)

Find packages where the location starts with the letter A using the LIKE operator

SELECT packageID, packagename, location
FROM Packages
WHERE location LIKE 'A%’

packagelD packagename location

_ Roof of the Worl,.. | Asia

4 Reef and Qutba... | Australia
5 Trans-Siberian E... | Asia
& Borneo Adventure | Asia

12 Rising Sun Explarer | Asia
% is the wildcard character, which matches any character. A% means A followed by any
other characters.

The underscore character _ matches a single character. A_ means A followed by any
single character.

Some RDBMSs also allow you to have wildcards which match characters within a
specified list or range

page 9

Geu
COMU114/M1G505190: Introduction to Database Development (

More than one condition

Conditions in a Select operation can be combined using the AND and OR operators, as
shown in the following examples:

Find holidays located in Asia with adultprice less than £1500

We use the AND operator when both conditions must be true:

SELECT packageID, packagename, location, adultprice
FROM Packages
WHERE location = 'Asia' AND adultprice < 1500

packagell packagename location adultprice
_ Trans-Siberian E.., |&sia 1199
12 Rising Sun Explorer | Asia 1399

Find all holidays in Asia or Europe

We use the OR operator when either condition may be true:

SELECT packageID, packagename, location, adultprice
FROM Packages
WHERE location = 'Asia’' OR location = 'Europe'

packagell packagenarne lacation adulkprice
_ Roof of the Worl,.. | Asia 1599

3 Alpine Action Europe 99

5 Trans-Siberian E... | Asia 1199

& Borneo Adventure | Asia 16939

10 Glacier Expedition | Europe 2990

1z Rising Sun Explorer | Asia 1399

Find holidays with adultprice between £1000 and £1500

We can use the AND operator with relative operators to match data within a range of
values:

SELECT packageID, packagename, location, adultprice
FROM Packages
WHERE adultprice > 1000 AND adultprice < 1500

packagell packagename location adultprice
Western ddvent,.. | USA 1499

5 Trans-Siberian E... | Asia 1199

] Colorado Winter,., |USA 1099

12 Rising Sun Explorer | Asia 1399

page 10

Geu
COMU114/M1G505190: Introduction to Database Development (

You can also use the BETWEEN keyword for this situation. This gives exactly the same
result as the previous query:

SELECT packageID, packagename, location, adultprice
FROM Packages
WHERE adultprice BETWEEN 1000 AND 1500

Date formats in queries

Dates are more complicated than most of the other data types, and it is important to
understand how your particular RDBMS interprets them.

The following query refers to a DateTime field:

SELECT firstname, lastname
FROM Users
WHERE datejoined > '1/1/2010'°

This condition will return all rows with datejoined later than 1% January 2010. What if the
condition was this:

WHERE datejoined > '14/3/2010'

Or what about this:

WHERE datejoined > '3/14/2010'

It is likely that one of these will work and the other will cause an error. This may depend
on the way your computer is configured. 14 is not a valid month value, but 3 is, so the
first version represents a valid date in UK form (dd/mm/yyyy), while the second is valid
in the US form (mm/dd/yyyy).

What about this:

WHERE datejoined > '3/7/2010'

This will not cause an error as 3 and 7 are both valid month values. However, it may not
give you the answer you expect. You can even find that dates in queries are interpreted

as US dates, while the results are shown in UK format.

To be safe, you can specify dates in the ISO standard date format (yyyy-mm-dd). The
following condition ensures that you mean 7" March 2010:

WHERE datejoined > '2010-03-07'

page 11

Geu
COMU114/M1G505190: Introduction to Database Development (

Aggregates

The gueries you have seen so far retrieve data row by row. It can also be useful to be
able to ask questions which combine the data in more than one row into a single value.
For example, you might want to count the number of rows which match a condition, or to
add up all the values in a particular column of a table.

SQL provides aggregate functions, including COUNT, SUM, AVG, MAX and MIN, to allow
you to do queries like that.

Counting

The simplest aggregate query counts all the rows in a table, for example:

SELECT COUNT(*)
FROM Users

COUNT (*) simply means “count each record”.
The result of this query is the single number 30, as there are 30 users in the table.

It can be helpful to give the results of aggregate functions meaningful labels when they
are displayed, using the AS key word:

SELECT COUNT(*) AS NumberoOfUsers
FROM Users

MNumberOfsers

You can use a Select operation to count only some of the rows:

Count the number of Users who have joined since the beginning of 2010

SELECT Count(*) AS JoinedSince2010
FROM Users
WHERE datejoined > '2010-01-01'

JoinedSince2010

As before, the DISTINCT key word can deal with duplicate values. For example, the
Packages table has 12 records, but only contains 5 different locations.

page 12

X

GCU
COMU114/M1G505190: Introduction to Database Development (

Compare the following two queries, where we are counting the number of values in a
particular field rather than the number of complete records:

SELECT COUNT(location) SELECT COUNT(DISTINCT location)
AS NumberOfLocations AS NumberOfLocations

FROM Packages FROM Packages

MNurmberOFLocation: Sh0u|d give 5

T

Note that no actual result is shown for the second version — this use of DISTINCT is
standard SQL, but isn’t supported in SQL Server Compact!

Summarising

We'll use the sales figures in Packages to demonstrate SQL summarising functions:

Find the total number of sales for all packages

SELECT SUM(sales) AS TotalSales
FROM Packages

TotalSales

Find the total number of sales for all packages to Asia

SELECT SUM(sales) AS TotalSales
FROM Packages
WHERE location = 'Asia’

TotalSales

Take care with aggregates

There are some common mistakes that people make when using aggregates. For
example, to find which package had the highest number of sales, and also list the name
of that package alongside its sales value, you might try this query:

SELECT packagename, MAX(sales)
FROM Packages

page 13

GCU
COMU114/M1G505190: Introduction to Database Development Sk

If you run this, though, you'll get an error message like this:

Database Manager

In aggregate and grouping expressions, the SELECT clause can
contain only aggregates and grouping expressions, [Select clause
= ,packagename]

The reason is as follows:

e packagename has one value for each row of the table
o MAX(sales) has one value for the entire table

Think about the results you are actually asking this query to give you:

packagename Max(Sales)
7~ | Western Adventure 894 1 row
Roof of the World Explorer
Alpine Action

Reef and Outback Adventure
Trans-Siberian Express

12 rows Borneo Adventure

Amazon & Inca Adventure
Patagonia Trek

Colorado Winter Adventure
Glacier Expedition

Raft the Grand Canyon

_ L Rising Sun Explorer

This can’t work! The result of a query must have the same number of rows in each
column, just like a table has. A simple rule to remember is:

all the fields or functions after the SELECT key word must have the same
number of values

You will see later on a better way of getting the information we were trying to get here.

Grouping

So far we have used aggregates to count or summarise an entire table, or a set of rows
matching a condition. It's also very useful to group rows which have something in
common together, and to count or summarise each group. This is done using the
GROUP BY key word.

In the Packages table, there is a group of rows which refer to packages in Asia, another
group of packages in the USA, and so on. Let’s count the number of rows in each group.

page 14

Geu
COMU114/M1G505190: Introduction to Database Development (

Find the number of packages available in each location

SELECT location, COUNT(*) AS NumberOfPackages
FROM Packages
GROUP BY location

location MumberOFP ackage:

R
Bustralia 1
Europe 2
South America 2
Lsa 3

What about the numbers of values?

¢ |ocation has one value for each group of rows (as we are grouping rows with
the same location together)

e COUNT(*) has one value for each group of rows (as aggregates are applied to
each group separately when the GROUP BY key word appears)

So the numbers of values in this query match up — so it works!
Why would the following NOT work?

SELECT location, packagename, COUNT(*) AS NumberOfPackages
FROM Packages
GROUP BY location

The packagename field causes the problem here — it has one value for each row of the
table, and the grouping by location has no effect on the packagename values.

Here is another example of grouping. This time we list the groups in order of the result of
the AVG function (denoted by the label AverageSales) for each group:

Find the average number of sales for each location and show the results in order of
popularity, most popular first

SELECT location, AVG(sales) AS AverageSales
FROM Packages

GROUP BY location

ORDER BY AverageSales DESC

location AverageSales
Europe 439
South America 277
Asia s}
Australia 223

page 15

Geu
COMU114/M1G505190: Introduction to Database Development (

Applying conditions to groups

You saw earlier how to use the WHERE keyword to apply conditions to decide which
rows to retrieve. You can do the same with groups of rows using the HAVING key word.

Find the number of packages available in each location, only showing locations
beginning with the letter A

SELECT location, COUNT(*) AS NumberOfPackages
FROM Packages

GROUP BY location

HAVING location LIKE 'A%’

location MumberOfPackage:

IS

Australia 1

Subqueries

You saw the MAX function earlier. This function can be used like this:

Find the maximum number of sales for any one package

SELECT MAX(sales) AS MaxSales
FROM Packages

Max3ales

This query result isn't very helpful, as it doesn't tell us which package is the most
popular. We tried earlier to list the name of the most popular package along with its
sales earlier, but ran into problems doing so. We could, however, get that information by
using the result of the MAX(sales) query, 894, in another query:

SELECT packagename, sales
FROM Packages
WHERE sales = 894

It's inconvenient to use two queries like this, so fortunately there’s a better way. In the
example below, the first query, which found the maximum value, is used as a subquery
for the second (outer) query. The subquery is in written in brackets:

page 16

Geu
COMU114/M1G505190: Introduction to Database Development (

Find the name and number of sales of the most popular package

ECT packagename, sa
FROM Packages

WHERE sai€és IN
(SELECT MAX(sales)
FROM Packages)

outer query — evaluated next,
uses answer from subquery
in comparison

packagename sales

Raft the Grand Canyon [t

Here’s another example, this time a question which can be answered with grouping and
a subquery:

Find the locations where the highest sales for any package to that location is less than
the average of sales for all packages

We need to find the average of all sales before we can do a comparison:

SELECT AVG(Sales)
FROM Packages

This is the subquery. The outer query needs to find the maximum sales for each
location, so it needs to group by location. The maximum for each group needs to be
compared with the subquery result.

The full query is:

SELECT location, MAX(sales) AS [MaxSales] FROM Packages
GROUP BY location
HAVING MAX(sales) < ALL

(SELECT AVG(Sales)

FROM Packages)

location Max3ales

Australia 223

Subqueries can also be useful if we want to get information from more than one table.
For example:

Find the full name of the user who made the booking with ID 4

The Bookings table simply identifies the user by username. The full name (firstname and
lastname) is in the Users table.

page 17

Gcu
COMU114/M1G505190: Introduction to Database Development C **** o

We can use a subquery to find which username is related to the booking with ID 4 in
Bookings, and then use the result of that to query Users for the full name.

SELECT firstname, lastname

FROM Users

WHERE username IN
(SELECT username FROM Bookings
WHERE bookingID = 4)

firstname lastname

There is actually another way of getting information from more than one table, which you
will see in a later chapter.

page 18

