

4. Improving the database design

Database normalisation ... 1
Problems with un-normalised data ... 2
Functional dependencies .. 4
Normalisation and normal forms .. 6
First normal form (or 1NF) ... 6
Second Normal Form (2NF) ... 8
Third normal form (3NF) ... 10
Summing up the first three normal forms ... 11
Higher normal forms .. 11
When to use normalisation .. 11

Database normalisation
You’ve now seen how to take a data model and represent it in a relational database. To
recap:

• each class is represented by a table

• each object becomes a row in the table

• each table has a primary key which is a field or set of fields which uniquely
identifies each row

• a relationship between two tables is represented by the foreign key field(s) which

refer to the primary key of the related table

However, there may still be problems which can result in data in the database becoming
inaccurate or difficult to retrieve. We need to do some further checking of the database
design to help prevent such problems.

The process of formally checking and modifying a relational database design is called
normalisation. Normalisation uses a set of rules to check whether all fields are in the
right tables and whether we need to restructure or add tables to the schema. These
rules were first proposed by E.F. Codd in about 1970, and have become a key part of
relational database design.

As a general rule, a well thought-out data model tends to lead to a pretty well normalised
database schema. However, any flaws in the data model design will have been
translated in the database schema. Also, there may be problems which arise because of
the way we have chosen to represent some features of the data model.

We will look at some of the problems which can arise, and how normalisation can help.

11/10/11 JP

 M1G505190: Introduction to Database Development

 page 2

Problems with un-normalised data

Problems with databases are usually a result of having attributes in the wrong tables.
The solution usually involves moving attributes to different tables and creating additional
tables.

Look at the following example from an IT consultancy company’s database.

NOTE

Of course the GCUTours database schema is the result of a careful design process, so all
its attributes must be in the right place. Maybe ‐ you can look back later and see if this is
true, but for now we’ll use other examples.

There are two tables containing information about consultants and the clients they are
assigned do work for. Look at the Assignments table. This table has repeated data –
there are two rows containing the details of the same client (Acme Ltd.). This happens
because two consultants have worked for this client. Data which is repeated
unnecessarily anywhere in a database is called redundant data.

Inaccurate data

Why is this a problem? One reason is that repeating data increases the chances of
inconsistencies and inaccuracies in the data. Look at the contact number for Acme
Ltd – the number is different in the two rows. Which one is correct? There is no way of
telling from this data.

It’s quite easy to see the problem by looking at the data shown in the figure. However,
what if we had only looked at the first three rows? We wouldn’t have seen the problem,
and might have concluded that the database design was OK. The problem might only
have surfaced later on when people actually started using the database.

However, following the normalisation process will pick up the problem before the
design is signed off and users start complaining.

Consultants Assignments

 M1G505190: Introduction to Database Development

 page 3

Update anomalies

These are problems which arise when you try to add or remove data from a database.
Update anomalies can make it impossible to get data into the database, and can cause
important data to be lost from the database. Here are two examples of problems with the
Consultants and Assignments tables.

Insertion problems

What should the primary key be for the Assignments table? It can’t be a single field –
you can see from the figure that every field can have duplicated values. The combination
of consultantID and clientnumber will be unique, though, so it should be suitable.

So, what if the company signs up a new client, but hasn’t decided which consultant(s)
will be assigned to work for them? We could add a new row with the information about
the client and simply leave the consultantID field left empty. Unfortunately, databases do
not allow rows to be inserted with a null value in a primary key field. Therefore we
have no way of recording information about a client until a consultant is assigned to
them.

Deletion problems

What if Amy Jones is no longer going to work for SuperPrint? We remove the relevant
row from the Assignments table. Whoops! We have just deleted all the information we
have in the database about SuperPrint. If we want to assign another consultant to work
for SuperPrint then we’ll have to re-enter the company details.

Both of these problems can be avoided with a small change to the design. We’ll look at
the improved version, and then we’ll go on to look in detail at how normalisation would
deal with this and other situations.

A better design

All of these problems arise because some of the fields in the Assignments table should
really not be in that table. What we need is an additional table to store information
about clients. The redesigned tables are shown below.

Now:

• each piece on information about the client is recorded only once.

Consultants Assignments Clients

 M1G505190: Introduction to Database Development

 page 4

• we can add a new client in the Clients table without assigning a consultant right
away

• we can delete an assignment without deleting information about the client.

THINK ABOUT IT

What would the relationships between these tables be, and how would these
relationships be implemented? What kind of relationship is there between consultants
and clients?

In this example, the problem has arisen because the design of the data model was
flawed. The purpose of the Assignment entity simply wasn’t clear enough. Had we
identified the need for a Client entity when designing the data model, and then the
database problems would not have arisen.

Functional dependencies
Normalisation is based on the idea of a functional dependency. The following
statement is an example of a functional dependency in the Consultants table you have
seen above:

If we know the value of a consultant’s consultantID wecan tell you the value of
his or her last name

We can write this more formally:

consultantID functionally determines lastname

or as symbols:

consultantID → lastname

So, if we know a consultant’s ID is 1001, can we say for certain what his last name is?
Yes – it’s Smith.

Does it work the other way round? If we know a consultant’s last name is Jones, can we
say for certain what her ID is? It looks like it from the data shown. However, the ID is
unique and the last name is not, so we could add another row later for a consultant
called Bob Jones, with ID 1006, for example.

Then, given the last name Jones, we can’t say for sure what the corresponding ID is as it
could be either 1002 or 1006. So, lastname does not functionally determine
consultantID.

 M1G505190: Introduction to Database Development

 page 5

THINK ABOUT IT

Are the following statements true or false:

firstname → lastname (Consultants table)

consultantID → firstname (Consultants table)

clientnumber → contact (Clients table)

consultantID → clientnumber (Assignments table)

On what is hours functionally dependent in the Assignments table?

Functional dependencies and keys

You saw the term primary key earlier in the module. Keys are closely related to
functional dependencies as follows:

The key fields of a table should functionally determine all the other fields in the
table.

So, as we have seen, lastname does not functionally determine consultantID, so it
cannot be a key field.

However, consultantID does functionally determine lastname, and also firstname (we
can write this as consultantID → firstname, lastname), so it is a key.

Primary keys

The terms key and primary key seem to be pretty much the same thing. There is an
important difference, though. Remember that a key can contain more than one field, so
what about the combination of consultantID and lastname? If we know that the ID is
1001 and the last name is Smith, can we say for sure what the first name is? Yes we can
– we can write this functional dependency as:

(consultantID, lastname) → firstname

So the combination of these two fields is a key. However, we don’t actually need
lastname in order to know firstname – the ID is sufficient as it is itself a key. Therefore,
this isn’t a primary key – a primary key must have no unnecessary fields. The rule is:

»

 M1G505190: Introduction to Database Development

 page 6

A primary key has no subset of its fields that is also a key.

This is actually quite important. Remember that we represent relationships using foreign
keys which must match primary keys. If we defined (consultantID, lastname) as the
primary key of Consultants, then there would need to be an additional lastname field in
Assignments to allow a foreign key to be defined, as shown in the figure below. This is
an example of redundant data.

Normalisation and normal forms

Now that we know all about functional dependencies and primary keys, we are ready to
do some normalisation. There are several levels of normalisation, called normal forms.
We proceed through the forms, refining the tables and addressing additional problems
each time.

First normal form (or 1NF)
First normal form ensures that we are not trying to cram several pieces of data into a
single field. A fancy way of saying this is that the data in a table should be atomic.

The following example shows a table which is not in 1NF. We are storing information
about the skills of our IT consultants. Each row has several pieces of data in the skills
field.

Why is this bad? One reason is that it is difficult to find all the consultants with a
particular skill with a table like this.

Assignments

Consultants

»

 M1G505190: Introduction to Database Development

 page 7

What if we make a separate field for each skill, like this?

Well, each field only contains one piece of information now. However, this is not a good
solution. What if Jane Lee learns to do web design in addition to her other three skills?
We would have to add a new field to the table to accommodate her all-round brilliance.
We are still keeping more than one skill value in each row, even if the values are actually
in separate fields. In fact, to be properly atomic, a table can’t have multiple fields with the
same kind of data, so this solution is still not atomic.

Here’s a general rule for checking for 1NF:

A table is not in first normal form if it contains data which is not atomic – that is,
it keeps multiple values for a piece of information.

Normalisation gives us rules – it also gives us ways to fix tables which don’t obey the
rules. The fix for a table not in 1NF is:

Remove the multivalued information from the table. Create a new table with that
information and the primary key of the original table.

This means we should now have two tables:

The foreign key of ConsultantSkills will be consultantID, and will refer to the primary key
of Consultants. This is a one-to-many relationship.

Consultants ConsultantSkills

foreign key

Consultants

»

»

 M1G505190: Introduction to Database Development

 page 8

Second Normal Form (2NF)

Getting to first normal form is a good start, but there can still be plenty of problems
lurking. To see an example, let’s now add some more information about the skills of the
consultants. Clients will be charged at different hourly rates for a consultant applying
each skill. The ConsultantSkills table could gain an extra field:

This table is in 1NF as the data is atomic. Before we can decide if it is in second normal
form we need to know what the primary key is.

It can’t be consultantID as the values are not unique. Neither are the values in skill.
However, the combination (consultantID, skill) must be unique (for each consultant, the
table stores each skill only once).

This is much like the example we looked at earlier, the Assignments table on page 2. As
in that example, this table is prone to update anomalies and inaccurate data. We solved
the problem for that example – now we’ll see how the definition of 2NF leads to a similar
solution here.

A table is in second normal form if it is in first normal form AND we need ALL
the fields in the key to determine to values of the non-key fields.

Why is this table not in 2NF? Well, the value of hourlyrate is functionally dependent only
on the value of skill, which is only part of the primary key.

skill → hourlyrate

hourlyrate does not depend on consultantID – database work is charged at £31 no
matter who is doing the work. So, we don’t need all the fields in the key to determine the
value of the non-key field, hourlyrate.

Again, normalisation gives us a way to fix this:

Remove the non-key fields that are not dependent on the whole of the primary
key. Create another table with those fields and the part of the primary key they
do depend on.

The result of applying this fix is shown in the next figure. The Consultants table is shown
here also to illustrate the relationships between the full set of tables.

ConsultantSkills

»

»

 M1G505190: Introduction to Database Development

 page 9

ConsultantSkills will now have another foreign key, skill, which will refer to the primary
key of Skills. This is another one-to-many relationship.

THINK ABOUT IT

We could have chosen to use an ID field as the primary key for Skills. What fields would
ConsultantSkills then have?

Many-to-many relationships

Careful design of the data model would probably have led to the same set of tables. This
situation would probably have been modelled in the design process as a many-to-many
relationship between Consultant and Skill, and our solution is a typical representation in
the database of this type relationship. Since a relational database cannot handle a
many-to-many relationship between two tables, the additional table ConsultantSkills is
required to make this work.

Remember the rule for representing a many-to-many relationship:

Where two entities have a many-to-many relationship, this is represented in the
database with an additional table which has a many-to-one relationship with each
of the two tables representing the entities.

Consultants ConsultantSkills Skills

foreign keys

»

 M1G505190: Introduction to Database Development

 page 10

Third normal form (3NF)
Tables in second normal form can still cause problems, as shown in the following
example. Let’s say that the company has two offices, in Glasgow and Edinburgh, and
each consultant is based in one office. We’ll try to store this information in the
Consultants table:

This table is certainly in first normal form.

It’s also in second normal form, as the primary key is the single field consultantID, so no
field can possibly depend only on part of the key.

However, there’s still a problem with repeated data. All the details for an office are
repeated for each consultant who is based at that office. Remember that repeating data
unnecessarily can lead to inaccuracies in the data – for example, look at the spelling of
“Cowcaddens” in the first and third rows.

The problem arises because the values of address and phone are dependent on the
values of more than one field. For example, given the consultantID is 1001, you know
that the address is “Cowcaddens Road”. But, given the office is Glasgow, you also know
that the address is “Cowcaddens Road”. We can write these dependencies as:

consultantID → address, phone
office → address, phone

Going to third normal form will help. Here’s the definition:

A table is in third normal form if it is in second normal form AND no non-key
fields depend on any fields that are not the primary key.

The way to fix a table which is not in 3NF is:

Remove the non-key fields that are dependent on a field (or fields) that is not the
primary key. Create another table with those fields and the field(s) that they do
depend on.

Applying this fix here gives us:

Consultants

Consultants Offices

foreign key

»

»

 M1G505190: Introduction to Database Development

 page 11

Now

• The values of address and phone for each office are stored once only
• It’s not possible to enter an invalid value for office in Consultants because each

value must match a value in the Offices table.

Summing up the first three normal forms

This quote is taken from Clare Churcher’s book on Beginning Database Design:

A table is based on:

• the key;
• the whole key;
• and nothing but the key (so help me Codd)

Higher normal forms

For most cases, normalising to third normal form will take care of the likely problems.
There are two more normal forms, 4NF and 5NF, which deal with more subtle problems.
There is also Boyce-Codd normal form, which privdes a single statement which
approximately encapsulates the first three normal forms. These are beyond the scope of
this module – you will learn about these later in your course.

When to use normalisation

Accurately identifying entities and their relationships and designing a data model tends
to lead to a database schema which is pretty well normalised. Most of the examples of
problems are based on tables which were badly designed on purpose, and which
wouldn’t have come about with a good data model.

However, sometimes databases are created by people without knowledge of data
modelling. There are many examples of databases in real world use which do not even
come close to first normal form.

So why normalise? There are basically two reasons to do so:

To check the database schema and highlight any flaws in the data model design
or the way it has been represented

or

To fix a database which has already been created without the aid of a suitable
data modelling process

