5: Doing more with queries

Improving query performance With iINdeXes..........cccci i 1
B Lo T g T Yo T = 1 o1 =SSP 4
Different Kinds Of JOINuuuiiiiieeic e e e e e e e e e e e e e e e e e e s e e e 8
Data definitioN QUEIESoooiiiiiiiiiiie ettt e s aneee e 10
INSEIT QUETTES .ottt ettt e e skt e e bt e e e e aabee e e abr e e e e 10
00T K= L= 0 LU =] = USSP PPRRR 10
DEIELE QUETIES ...ttt e e e e et e e e e e e e s e ettt e e e e e e e e ee et aaeaaeeaaeaaeeansaananns 11
Parameterized QUEIIEScooiuiiiiiiiiie ettt e e 12

Improving query performance with indexes

When you run queries on the GCUTours database you see the results virtually
instantaneously. With a small database, the performance of a query, or the time it takes
to complete, is not an issue. However, when there are many thousands of rows in the
database tables, it can take a lot more time to extract the rows you want. If query
performance is poor, the system can seem sluggish and unresponsive to the users.

Indexes can enable particular rows of a database table to be found more quickly.
Database indexes are much like the index you would find at the back of a book:

e Contains an ordered list of topics in a separate section
of the book

e Each topic has a page number which points to the page
in the main section of the book with the full details of

Book index the topic

e You can find the topic you want very quickly as the
index is in order

e Finding the topic using the index is much faster than
searching through the whole book

e Contains an ordered list of the values in particular
field(s), stored in a separate part of the database

e Each value has areference which points to the full
record which contains that value

e The database can find the record you want very quickly
as the index is in order

e Finding the record using the index is much faster than
searching through all the records

Database index

GCU
M1G505190: Introduction to Database Development iyt

Which fields should be indexed?

You should index the fields which will be most often used as conditions in queries, which
will depend on the use cases for the system.

Let's look at the Users table, part of which is shown below:

firstname lastname address username password
Ibn Battuta 2 Silk. Road abu pass
Arnerigo Vespucci 1499 Ametica &... | ametigo pass
Bartolemeu Dias 1431 Gold Coast... bart passiud
Jacques Cartier 156 Canada Cre... |cartier pard
Christopher Columbus 1492 America A... | chris ALEL
David Livingstone 1852 Yictoria Falls | dave passwd
Ferdinand Magellan 1520 Pacific Hei... | Ferdy piad
Francisco Pizarro 1Z Lima Lane Frankie password
Francisco Wasquez de Cor... |95 Arizona Avenue |FrankieZ passwd
Freva Stark 19 Hadhramaut ... |freva password
Gaspar Corte Real 23 TerraVerde ... |gaspar ALLL

It's likely that we’ll want to search for users by username, for example in the Log in use
case. Therefore the username field should be indexed.

What about the other fields? There might be a need to search for users by name.
Therefore we might want to create an index on lasthame. We could go further and create
an index on lastname AND firstname. Then, a search for David Livingstone will use the
first part of the index to find all the Livingstones in the table, then the second part to find
the Davids among them. This is an example of a compound index.

Why not just index everything?

We've said that indexes speed up queries — so, if all the fields are indexed then all
gueries should run faster, shouldn’t they? Well, they might, but the problem then is the
amount of additional storage space which would be needed to hold all the indexes. This

could be a major problem for a large database.

Having too many indexes can also cause performance problems when adding new data
and deleting data as all the indexes need to be updated.

One of the decisions which we must take when designing a database is how to choose
indexes carefully to speed up common queries without having too many indexes.
Creating indexes

You can create an index for a table in Web Matrix when the table is open in Table
Definition view. Select the New Indexes icon on the Table ribbon.

page 2

GCU
M1G505190: Introduction to Database Development Cx*

Home Table
e f - X Wiew = 3}! Wigw =
=M E BE =g R

Mew

Delete - Delete -

e Defirition | Data Mew Delete T
Table Column Column
ew Table Wigw Zolurmns Relationships Indexes

You can then select the index field in the New Index window.

New Index

Select columns For this indes:

Calurnn Order
Ofirstname rrvarchar Ascending
Miastname nvarchar Ascending
Caddress nvarchar Ascending
ud TBN Ascending v
Dpassword rrvarchar Ascending
Ddateioined datetime Ascending
Mame | I¥_Users_username | [oK] [Carcel]

To create a compound index you can select more than one field for the index. In the
figure below, the index called IX_Users_fullname includes lasthame and firstname fields.

New Index

Select columns For this indes:

Calurnn Order
ud Ascending v
L4 Ascending w
Uladdress rvarchar Ascending
Cusername nvarchar E Ascending
Ijpasswlt:ird rvarchar Ascending
Cldatejoined datetime Ascending
Marme I%_Users_fullname | ’ K] ’ Cancel]

page 3

Geu
M1G505190: Introduction to Database Development (

As always, you can also use SQL, like this:

CREATE INDEX IX_Users_fullname ON Users (lastname, firstname)

You can also remove an index using SQL. The opposite of CREATE in SQL is DROP.

DROP INDEX Users.IX_Users_fullname

Joining tables

What query will the Show tours use case need? We might want to show the
packagename, adult price and date of departure of each tour. The problem is that the
name and prices are in the Packages table, while the departure date is in the Tours
table.

The data modelling process encouraged us to treat packages and tours as separate
entities and so put them in separate tables in the database. If it hadn’t, the rules of
normalisation would have made us do so anyway to avoid duplication of data and
possible inaccuracies in the data.

Database design generally results in data being spread across multiple tables. It's
actually fairly uncommon to find all the data need for a particular action stored in a single
table.

Packages
packagell location i} gEnane description dultprice childprice departure sales
Usa estern Advent,.. | X typicaltouris ../ 1499 Q99 Glasgow 314

F nﬁ [|Roaf of the Warl... | N this vear is /.. 15-99 \"REE Londan Gabwick 126
3 Europe Alpine Action Glasgow 759
4 Australia Reef and Outba. .. Manchester 223
|3 Asia Trans-Siberian E. .. London Heathrow | 185
3 #Asia Borneo Adventure Manchester 254
7 South America Amazon & Inca ... London Heathrow 433
g South America Glasgow 121

Tours

tourIl

01032011 00;.)
05/06/2011 00:...
02/09/2011 O0:...
02/09/2011 O0:...

foreign key : packagelD

offer packagell

Is \ Loyjosfzont o0:.) 20

& 05(06/2011 00:./. |0
7 03(2011 gfe... |25

w | ra ol = = = =
—

Part of the data in the Packages and Tours tables

page 4

GCU
M1G505190: Introduction to Database Development Sk

The query now needs to join the tables to gather all the information that we need. If you
were to get the information just by looking at the tables you would look at each tour in
turn, and then look up the corresponding package.

For example, for the row of Tours highlighted in the figure above you would pick out the
value of ‘01/03/2011’ for departure date, and then look for the matching row of
Packages. These tables are related by the foreign key field, packagelD, so you would
look for the row with the value 2, and pick out the values ‘Roof of the World Explorer’
and 1599 for package name and adult price.

NOTE

The next row of Tours would match the same row of Packages as it also has the value of
2 for packagelD.

We can do the same thing with an SQL query. Looking up matching rows is done using
a join condition:

WHERE Packages.packageID = Tours.packagelD
This means

“join each row in Tours to the row in Packages where the value of packagelD in
Packages matches the value of packagelD in Tours”

The dot notation, for example Packages.packagelD, is used to specify a field belonging
to a particular table - then we know exactly which one we mean if different tables have
fields with identical names.

The full query also needs to say what fields we want to get, and needs to specify that the
data will come from both tables.

SELECT Packages.packageID, packagename, adultprice, departuredate

FROM Packages, Tours
WHERE Packages.packageID = Tours.packagelD

page5

GCU
M1G505190: Introduction to Database Development Sk

packagelD packagename adulkprice departuredate

4 Reef and Outba... |2199 01/03{2011 00:...
4 Reef and Outba... |2199 01/03f2011 00:...
4 Reef and Outba... |2199 0zj09j2011 0:...
5 Trans-Siberian E.., | 1199 01/03/2011 00:...
5 Trans-Siberian E.., |1199 01/06/2011 00;...
|3 Trans-Siberian E... [1199 01/08{2011 00:...
-] Borneo Adventure | 1699 08/03/2011 00:...
7 Amazon & Inca ... 1999 01/02f2011 00:...
7 Amazon & Inca ... | 1999 01/08/2011 00:...
g Patagonia Trek 1599 01/05{2011 00;...
9 Colorado Winter... | 1099 01/02{2011 00:...
9 Colorado Winter... | 1099 01/03/2011 00:...
11 Raft the Grand ... |799 01/05f2011 0a:...
11 Raft the Grand ... |799 01/06f2011 0Q:...
11 Raft the Grand ... | 799 01072011 0d:...
11 Raft the Grand ... |799 01/08{2011 00:...
12 Rising Sun Explorer | 1399 01/07(2011 00:...

Note that the packagelD has been included in this query. Since this field is in both
tables, dot notation has been used to say which one to display. We should really give
the full name for every field, for example Packages.packagename, Tours.departuredate,
but we get away without doing so here because these field names are unique in the
database.

NOTE

There is a lot of repeated data in the query result. This is OK because this is just a view
of the data — there is still no repetition in the stored data.

You can combine a join condition with any other condition using AND if you want to filter
the query results, for example:

SELECT Packages.packageID, packagename, adultprice, departuredate
FROM Packages, Tours

WHERE Packages.packageID = Tours.packagelD

AND location = 'Asia’

packagelD packagename adulkprice departuredate
_ Roof of the Warl... | 1599 01/03{2011 00:...
2 Roof of the Waorl... | 1599 05/06/2011 00:...
5 Trans-Siberian E... | 1199 01/03/2011 00:...
5 Trans-Siberian E.., |1199 01/06/2011 00;...
|3 Trans-Siberian E... [1199 01/08{2011 00:...
-] Borneo Adventure | 1699 08/03/2011 00:...
12 Rising Sun Explorer | 1399 01/07f2011 00:...

page 6

Geu
M1G505190: Introduction to Database Development (

Don’t forget the join condition

A common mistake people make when writing join queries is to miss out the join
condition, like this:

SELECT Packages.packageID, packagename, adultprice, departuredate
FROM Packages, Tours

The database will then join every row of the first table to every row of the second. In
this database Packages has 12 rows and Tours has 26, so the query gives (12x26) =
312 rows, and the result is probably not very useful!

Joining more than two tables

The example query above joins two tables. However, related data can be split between
many tables in a database, and may need to be gathered together in with a query. You
can join as many tables as you like as long as you include join conditions for each pair of
related tables combined with AND, for example:

FROM Packages, Tours, Bookings
WHERE Packages.packageID = Tours.packagelD
AND Tours.tourID = Bookings.tourlID

The Show bookings use case might need to show the following information:

¢ firsthame and lastname from Users
e adults and children from Bookings
e departuredate from Tours

¢ name from Packages

Think about how you would write a query to get the following result

firstmame lastname adults children departuredate packagename

Marco Folo

01/03f2011 00:.,. |Western Advent...
01/032011 00:.,. |Roof of the Warl..,
Marco Folo 01/06/2011 00:... |Trans-Siberian E...
0z/09/2011 00:... |Western Advent...

Wasco datzama 01/03/2011 00:... |Alpine Action

w2 2 M e

z
1
z
Vasco daizama 4
2z
2

Ferdinand Magellan 01/03f2011 0:... |Reef and Outba...

page 7

M1G505190: Introduction to Database Development

Different kinds of join
Inner join

The examples you have seen so far are called simple joins, or inner joins. An inner join
returns data only from rows where there are matching values in both tables.

SQL gives you another way of writing joins, for example:

SELECT Packages.packageID, packagename, adultprice, departuredate
FROM Packages
INNER JOIN Tours ON Packages.packageID = Tours.packageID

packagell packagename adultprice departuredate

% Reef and Outba... |2199 01/03f2011 0:...
% Reef and Qutba,,, 2199 01032011 00:..,
4 Reef and Outba... |2199 02/0%)2011 00:...
5 Trans-Siberian E... | 1199 01/03/2011 00:...
5 Trans-Siberian E... | 1199 01/08f2011 00:...
5 Trans-Siberian E... | 1199 01/08f2011 00:...
[Borneo Adventure | 1699 05/03/2011 00,
7 Amazon & Inca ... 1999 01/02{2011 00:...
7 Armazon & Inca ... | 1999 01/08f2011 00:...
-] Patagonia Trek 1899 01/05/2011 00:...
9 Colorado Winter... | 1099 01/02f2011 00:...
9 Colorado Winter.., | 1099 01/03f2011 00
11 Raft the Grand ... |799 01/05{2011 00:...
11 Raft the Grand ... |799 01/06f2011 00:...
11 Raft the Grand ... |799 01/07j2011 00:...
11 Raft the Grand ... |799 01/08f2011 0a:...
1z Rising Sun Explorer | 1399 01/07j2011 00;...

The result is exactly the same as the first join query we looked at.

You can still apply conditions in addition to the join:

SELECT Packages.packageID, packagename, adultprice, departuredate
FROM Packages

INNER JOIN Tours ON Packages.packageID = Tours.packageID

WHERE location = 'Asia’

packagell packagename adultprice departuredate
_ Roof of the warl,.. | 1599 01/03f2011 00;...
2 Roof of the Warl... | 1599 05/06/2011 00:...
|3 Trans-Siberian E... [1199 01/03{2011 00:...
5 Trans-Siberian E... | 1199 01/08f2011 00:...
5 Trans-Siberian E... | 1199 01/08/2011 00:...
i) Borneo Adventure | 1699 03/03/2011 00:...
1z Rising Sun Explorer | 1399 01/07j2011 00;...

page 8

GCU
M1G505190: Introduction to Database Development (

Outer join

If you look at the results of the inner join query carefully you will see that there is no row
with packagelD = 10. However, there is a package in the Packages table with that ID.
Look at the results of the following query, which uses an outer join:

SELECT Packages.packageID, packageame, adultprice, departuredate
FROM Packages
LEFT OUTER JOIN Tours ON Packages.packageID = Tours.packageID

packagell packagename adultprice departuredate

1 Western Advent... | 1499 0zf09f2011 00;,.,
2 Roof of the Warl... | 1599 010302011 00:...
2 Roof of the Warl,.. | 1599 05/06/2011 00,
3 Alpine Action 99 01/03/2011 00,
3 Alpine Action G99 01/03/2011 00,
4 Resf and Outba... |2199 01/03/2011 00,
4 Reef and Outba,., (2199 01/0372011 00:..,
4 Reef and Outba... |2199 010372011 00,
4 Reef and Outba... |2199 0z/09/2011 00,
5 Trans-Siberian E... 1199 01/03/2011 00,
5 Trans-Siberian E... 1199 01/06f2011 00,
5 Trans-Sibetian E.., |1199 01082011 00;,.,
[Borneo Adventure | 1699 05/03/2011 00,
7 Armazon & Inca ... 1999 01/0z2f2011 00,
7 Amazon & Inca ... 1999 01/08/2011 00,
g Patagonia Trek 1899 01/0s/2011 00,
9 Colorado Winter,,, |1099 o1f02f2011 oo,
9 Colorado Winter,.. |1099 010302011 00:... / N U LL
10 Glacier Expedition | 2990 ||
11 Raft the Grand ... |799 01/05/2011 00,
11 Raft the Grand ... |799 01/06/2011 00,
11 Raft the Grand ... |799 01f07f2011 00,
11 Raft the Grand ... | 799 01/08f2011 00:,.,
1z Rising Sun Explorer | 1399 010772011 00:...

A left outer join returns data from all the rows of the first table and only the rows of the
second table which have matching values.

So in this example, the highlighted row has data from Packages and a NULL for
departuredate as there is no matching row in Tours for package 10.

Is this useful? Well, it shows clearly that there is a package for which there are no tours
scheduled, which the inner join version did not do. The choice of which query to use
would depend on the exact requirements in the use case.

What effect do you think the following would have?

RIGHT OUTER JOIN Tours ON Packages.packageID = Tours.packagelD

page 9

Geu
M1G505190: Introduction to Database Development (

Data definition queries

You have already seen several examples of data definition queries. Data definition
gueries include

CREATE TABLE
ALTER TABLE
DROP TABLE
CREATE INDEX

This part of SQL is sometimes known as DDL (Data Definition Language).

Insert queries

You have also seen an example of an INSERT query. Here it is again to remind you.

INSERT INTO Users
(firstname,lastname,address,username,password,datejoined)

VALUES

('Ferdinand', 'Magellan', '1520 Pacific Heights', 'ferdy', 'pwd',
'2007-08-29")

NOTE

A single INSERT query can only apply to one table. The same is true for updating and
deleting

Update queries

An UPDATE query allows you to change data that is in a table. For example, the Edit
booking use case may need a query that lets you change the number of adults and
children in the booking. Such a query might look like this:

UPDATE Bookings
SET adults = 3, children = 5
WHERE bookingID = 1

page 10

M1G505190: Introduction to Database Development

This example updates the single row with bookingID = 1. You can update many rows, or
even all the rows in a table, at the same time.

Increase the adult price of all packages in Asia by £100

UPDATE Packages
SET adultprice = adultprice + 100.0
WHERE location = 'Asia’

Delete queries

A DELETE query allows you remove a row or rows from a table.

Delete user with username vdagama from the Users table

DELETE FROM Users
WHERE username = 'vdagama'

This seems straightforward, but it won’t work! The reason is that there are bookings for
this user in the Bookings table, highlighted in the figure below.

bookingID tourlD UsErname adulks children status

5 mpalo

tickets sent
tickets nok sent

14 mpolo tickets not sent

tickets sent

g vdagama tickets nok sent
— —

wilo | offm o~

2
2 1
3 2
4 4 vdagama 4
5 2
[10 Ferdy 2 tickets nok sent
If we deleted the user, then those bookings would have the value ‘vdagama’ in the
username field, while there would no longer be a matching value in the Users table.
The database will not allow this since there is a foreign key which ensures that each
booking must be for a valid user.

There are two ways of making it possible to delete this user:

1. Delete all bookings for the user first

Run this query first:

DELETE FROM Bookings
WHERE username = 'vdagama'

and then run the query which deletes the user.

This is the safer option

page 11

GCU
M1G505190: Introduction to Database Development (

2. Make deleting a user automatically delete all bookings for the user

This is called a cascading delete, and is an option you choose when you create the
foreign key relationship between the tables. You should only choose this option if you
are sure that it will not result in the loss of important data. You can set it up using SQL
when you define the foreign key. The following could be part of a CREATE TABLE or
ALTER TABLE statement.

CONSTRAINT FK_Bookings_Users
FOREIGN KEY(username) REFERENCES Users(username) ON DELETE
CASCADE

Parameterized queries

One of the first queries we looked at was this:

SELECT *
FROM Users
WHERE username = 'mpolo’

This query finds the user with username mpolo, and retrieves all his or her details. That
sounds like something we might want to do again and again, but not always for the same
user.

You can make the value of username a parameter for the query. Every time the query is
executed, a different value can be supplied for the parameter. The query needs to be
modified slightly:

SELECT *
FROM Users
WHERE username = (@username

The @ symbol indicates that the value is to be treated as a parameter, not an actual
value.

You can't actually execute this query directly in a WebMatrix query window as there is

no way to supply a parameter value. You will see in the next chapter how parameterized
gueries help when building a data-driven web application with WebMatrix.

page 12

