

6: Building Applications

Databases and applications .. 1
Building applications ... 2
Database servers .. 3
Web applications with WebMatrix .. 3
Reports ... 8
Connecting to a database .. 9
Appendix: Code listings for WebMatrix web pages ... 10

Databases and applications
Up to now you have been working directly with the tables and queries in a database.
You have learned how to design the database schema and how to design queries to
retrieve information from the tables.

However, it’s unlikely that you would want the end-users of your database to work with
those tables and queries. The users of the GCUTours system, for example, will probably
not be database experts who are happy to delve into the tables or to run SQL queries –
they just want to book holidays!

To be useful, a database usually needs to be part of an application. There are two main
reasons for creating an application:

• to provide a user-friendly interface for getting information into and out of the
database.

• to provide processing of information, or business logic, over and above the
capability of SQL queries

An example of a piece of business logic in the GCUTours system might be:

when a new booking is created, the system should update the value of the sales
value for the appropriate package

People have some different viewpoints on databases and applications:

The database designer The programmer

an application is a
way of processing
the data in my
database...

a database is
somewhere to
store the objects
in my application...

11/10/11 JP

 M1G505190: Introduction to Database Development

 page 2

Building applications
There are many different ways of building an application which uses a database. Here
are some examples:

RDBMS
application

• uses tools provided by the RDBMS
• form and report designers create the interface
• forms and reports can be created as web pages or as

desktop applications
• a programming language built into the RDBMS can be used

to write business logic, e.g. Oracle PL/SQL

Client-server
application

• desktop client application written in a programming
language such as C# or Java

• connects to a database server to store and retrieve data
• database server is usually on a separate computer which

can be accessed over a network by many clients

Web application • HTML web pages with code included which queries the
database and allows results to be embedded in page

• needs a server which supports a web application
technology such as ASP.NET or Java Server Pages

• code written in a programming language such as C# or
Java

• code to query database runs on a server and HTML page
with data embedded is sent to web browser

• suitable for very simple applications

Enterprise web
application

• uses same technology as web application but designed for
larger, more complex applications

• application is organised in layers/tiers, each with their own
role, e.g. database access

• information is represented as classes and objects within the
application, and passed to a database for long-term storage

There are many other types of applications which can also use databases, for example
games and mobile phone applications.

The types of application listed above look very different, but they actually have a lot in
common:

• forms allow users to enter information
• reports or summaries of information are presented to users
• user actions result in business logic being carried out

Regardless of the tools used, applications must be carefully designed to allow the
user to carry out the tasks associated with the use cases of the system. Users focus

 M1G505190: Introduction to Database Development

 page 3

on tasks, and should not be required to understand the structure of the underlying
database.

The interface should:

• present the user with information in a way which matches the task rather than
the database schema – join queries are often needed to gather data from
separate tables, and queries often use values input by the user as criteria to
search for specific data

• gather information from the user which needs to be stored – this usually involves

constructing INSERT, UPDATE or DELETE queries using values input by the
user

In all but the simplest cases, an application is not simply a way of browsing and editing
database tables. Real applications need to have interface and business logic, which is
implemented by writing code in a programming language.

Database servers
In many applications, the database is a resource which needs to be shared by many
clients at the same time. A client could be, for example. a desktop application or a web
page. Databases which need to be accessed concurrently are typically located on
database servers. A database server can be a piece of software running on the same
computer as the client, or on a separate computer which clients access over a network.
Sometimes the computer which hosts the database is also known as a database server.

Many popular RDBMSs are designed to work in this client-server mode, for example
Oracle, MySQL and Microsoft SQL Server. In contrast, databases such as SQL Server
Compact, which you have been using, and Microsoft Access are designed mainly to be
embedded within a single application, and are not suitable for large-scale applications.
However, the principles of database design and the SQL language are the same. It can
be convenient to design and test an application using an SQL Server Compact database
and then migrate this to SQL Server when deploying the application.

Web applications with WebMatrix
WebMatrix is designed for building simple data-driven web applications. It is based on a
server technology called ASP.NET Web Pages, and uses the C# programming
language. We will look at how it can be used to create some simple web pages which
might be part of a GCUTours web application. We will not worry too much about
designing nice-looking web pages here - you will do that in another module. You can
download these examples from your module website and try out all these examples. The
full code listing are given at the end of these notes.

 M1G505190: Introduction to Database Development

 page 4

Listing users

The first page we will look at gets a list of the names of the users from the database and
displays it. For each user, it shows a hyperlink which links to a page which displays
further details about that user. This is an example of master-detail pages, which are
very common in websites.

The pages are created in WebMatrix as CSHTML files (HTML files with C# code in
them). They contain mainly HTML to define the layout of the pages, but also include
some special code which queries the database and embeds data in the HTML so that it
appears in the page in your web browser. This code is marked with @ symbols, and
sections of code can be enclosed in {} brackets. Don’t worry if you are not very familiar
with HTML – you will learn more about it in another module. HTML mainly consists of
elements which mark up elements of a web page, e.g. paragraphs (<p>), tables, rows
and cells (<table>, <tr> ,<td>) and hyperlinklinks (<a>).

The user page, users.cshtml, includes the following code which connects to and queries
the database

@{
 var db = Database.Open("gcutourswm");
 var selectQueryString = "SELECT * FROM Users";
 }

The results of the query are embedded in an HTML table:

@foreach (var row in db.Query(selectQueryString)){
 <tr>
 <td>@row.firstname</td>
 <td>@row.lastname</td>
 <td><a href="userdetail.cshtml?username
 @row.username">details</td>
 </tr>
}

 M1G505190: Introduction to Database Development

 page 5

This code uses a foreach loop which goes through the results of the query and
produces a table row for each user. Note that the third cell in each row displays a
hyperlink which includes the username for that user. When a user clicks on the details
link for Ferdinand Magellan, for example, the browser will navigate to
userdetail.cshtml?username=ferdy.

The user detail page, userdetail.cshtml, will need to be able to read the username value
from this query string. It includes the following code to get the username value and
uses it as a parameter in a query: When the query is executed by db.Query, the
parameter @0 is replaced by the value of username which has been read from the query
string as Request[“username”].

@{
 var username = Request["username"];
 var db = Database.Open("gcutourswm");
 var selectQueryString =
 "SELECT * FROM Users WHERE username=@0";
 var result = db.Query(selectQueryString, username).FirstOrDefault();
 }

Tours and packages

The user list example all the data was from the same table. The next example shows
master-detail pages where the master page contains data from one table, and the detail
page shows data in a related table. First, a list of current tours is shown, and each one
contains a link to a page showing the details of the related package.

 M1G505190: Introduction to Database Development

 page 6

The code for the query in tours.cshtml is similar to the users example. Note that the
query needs data from both Tours and Packages tables as we want to show the
package name, which is not in the Tours table.

@{
 var db = Database.Open("gcutourswm");
 var selectQueryString =
 @"SELECT departuredate, offer, packagename, Tours.packageID
 FROM Tours, Packages
 WHERE Tours.packageID = Packages.packageID";
 }

Some slightly complicated-looking C# code has been used to format the date neatly:

<td>@string.Format("{0:d}", row.departuredate)</td>

The page packages.cshtml is similar to the user details page. One extra feature is the
way it displays an image using an HTML element. The code embeds the path to
an image file, which is in the images folder of the website:

The path to the image file is stored in a field in the database. Note that the image itself
is not stored. This is a common way of displaying images in data-driven websites.

Editing bookings

The final example demonstrates a form which allows the user to update data. A page
shows a list of bookings with a link beside each one which leads to a page which allows
the number of persons in the booking to be updated.

 M1G505190: Introduction to Database Development

 page 7

The edit form page, editbooking.cshtml, is a bit more complicated than the other ones
we’ve seen, so don’t worry if you don’t follow what the code is doing. The HTML contains
a <form> element.

<form method="post" action="">
 <input type="hidden" name="bbookingID" value="@id" />
 <p>Booking ID: @result.bookingID</p>
 <p>User: @result.lastname, @result.firstname</p>
 <p>TourID: @result.tourID</p>
 <p>Adults: <input name="adults" type="text" size="5"
 value="@result.adults" /></p>
 <p>Children: <input name="children" type="text" size="5"
 value="@result.children" /></p>
 <p><input type="submit" value="Update" /></p>
</form>

The form contains <input> elements which display the text boxes for editing adults and
children. There is also a hidden input element which is simply there to keep track of the
current booking ID.

When the user clicks the Update button the values entered in the adults and children
boxes are sent, or posted, back to the same page, and can be read, along with the
booking id which is posted by the hidden input.

var id = Request["bookingID"];
var adults = Request["adults"];
var children = Request["children"];

The code checks to see whether data has been posted from a form (IsPost) and if so, an
update query is executed. The result of this should be to update the values of adults and
children for that booking in the Bookings table. After updating, the browser is redirected
back to the list of bookings.

if (IsPost) {
 var updateQuery = @"UPDATE Bookings
 SET adults = @0, children = @1
 WHERE bookingID = @2";
 db.Execute(updateQuery, adults, children, id);

 Response.Redirect(@Href("~/bookings.cshtml"));
}

You can test this page by using it to edit a booking. When you have done so, go to the
Databases workspace and look at the data in the Bookings table to see if the update has
worked. You may have to refresh the table.

 M1G505190: Introduction to Database Development

 page 8

Reports

A report should give an easily readable summary of some part of the data in a
database. Reporting tools are used to produce attractively formatted reports which
might, for example, be used to present information to company managers. Reports can
be produced in a form for printing or can be displayed in web pages.

The data in a report can be based on tables or saved queries, and can be formatted in
a variety of ways. Data can be grouped and summarised to show meaningful
information which could be difficult to discern simply by looking at the raw data in the
tables.

Some RDBMSs, such as Oracle and Access, include reporting tools, while some
programming tools, such as Microsoft Visual Studio, can generate reports. There are
also specialised reporting tools such as Crystal Reports. The figure below shows a web
report created in Visual Studio. The report has options to save to Excel, PDF or Word for
printing.

WebMatrix doesn’t have any support built in for database reports, although, confusingly,
it does have a workspace for reports on web page usage.

 M1G505190: Introduction to Database Development

 page 9

Connecting to a database

In the WebMatrix examples we have seen here, the database is a SQL Server Compact
database which is included in the application. To access the database, the code simply
opens the database file.

var db = Database.Open("gcutourswm");

In many cases, however, applications which use databases are separate from the
application. Often the application is not even on the on the same computer as the
database, and they communicate over a network. Many users or applications may be
making use of the same database at the same time. In this case, the application is
known as a client, which makes use of a database server..

An application which wants to make use of a database must connect to the database.
The application usually needs to specify the following information:

• the database driver – a piece of software which provides an interface between
the application language (e.g. Java, Visual Basic) and a specific type of
database (e.g. Access, Oracle, JavaDB)

• the network address or name of the computer where the database is located
• the name of the specific database on that computer (e.g. the gcutours database)

These are often combined into a string of characters called the database URL.

It’s possible to connect to just about any type of database from just about any
programming language, as long as you have a suitable database driver.

Once the connection has been made the application usually communicates with the
database by sending SQL queries.

Connecting to a JavaDB database

The GCUTours case study application is an enterprise application written in Java, which
connects to a JavaDB database. The following lines of Java code sets up the connection
information. In this case, the database is on the same computer as the application, so
the network name is localhost1.

private static String DRIVER_NAME =
"org.apache.derby.jdbc.ClientDriver";
private static final String DATABASE_URL =
"jdbc:derby://localhost:1527/C:/work/netbeansfirstyear/Databases/
JavaDB/gcutours";

1 1527 is the TCP port

 M1G505190: Introduction to Database Development

 page 10

Appendix: Code listings for WebMatrix web pages
users.cshtml
@{
 var db = Database.Open("gcutourswm");
 var selectQueryString = "SELECT * FROM Users";
 }

<!DOCTYPE html>
<html>
 <head>
 <title>GCUTours users</title>
 </head>
 <body>
 <h1>GCUTours users</h1>
 <table>
 <thead>
 <tr>
 <th>First name</th>
 <th>Last name</th>
 <th></th>
 </tr>
 </thead>
 <tbody>
 @foreach (var row in db.Query(selectQueryString)){
 <tr>
 <td>@row.firstname</td>
 <td>@row.lastname</td>
 <td><a href="userdetail.cshtml?username=
 @row.username">details</td>
 </tr>
 }
 </tbody>
 </table>
 </body>
</html>

 M1G505190: Introduction to Database Development

 page 11

userdetail.cshtml
@{
 var username = Request["username"];
 var db = Database.Open("gcutourswm");
 var selectQueryString =
 "SELECT * FROM Users WHERE username=@0";
 var result = db.Query(selectQueryString, username).FirstOrDefault();
 }

<!DOCTYPE html>

<html lang="en">
 <head>
 <meta charset="utf‐8" />
 <title>GCUTours user detail</title>
 </head>
 <body>
 <h1>GCUTours user detail</h1>
 <h2>@result.lastname, @result.firstname</h2>
 <p>Username: @result.username</p>
 <p>Joined: @string.Format("{0:d}", result.datejoined)</p>
 <p>Back to list</p>
 </body>
</html>

 M1G505190: Introduction to Database Development

 page 12

tours.cshtml
@{
 var db = Database.Open("gcutourswm");
 var selectQueryString =
 @"SELECT departuredate, offer, packagename, Tours.packageID
 FROM Tours, Packages
 WHERE Tours.packageID = Packages.packageID";
 }

<!DOCTYPE html>
<html>
 <head>
 <title>GCUTours current tours</title>
 </head>
 <body>
 <h1>GCUTours current tours</h1>
 <table>
 <thead>
 <tr>
 <th>Departure date</th>
 <th>Discount</th>
 <th>Package</th>
 </tr>
 </thead>
 <tbody>
 @foreach (var row in db.Query(selectQueryString)){
 <tr>
 <td>@string.Format("{0:d}", row.departuredate)</td>
 <td>@row.offer%</td>
 <td><a href="package.cshtml?packageID=
 @row.packageID">@row.packagename</td>
 </tr>
 }
 </tbody>
 </table>
 </body>
</html>

 M1G505190: Introduction to Database Development

 page 13

package.cshtml
@{
 var id = Request["packageID"];
 var db = Database.Open("gcutourswm");
 var selectQueryString =
 "SELECT * FROM Packages WHERE packageID=@0";
 var result = db.Query(selectQueryString, id).FirstOrDefault();
 }

<!DOCTYPE html>

<html lang="en">
 <head>
 <meta charset="utf‐8" />
 <title>GCUTours package detail</title>
 </head>
 <body>
 <h1>GCUTours package detail</h1>
 <h2>@result.packagename</h2>

 <p>Location: @result.location</p>
 <p>Price (adult): £@result.adultprice</p>
 <p>@result.description</p>
 <p>Current tours</p>
 </body>
</html>

 M1G505190: Introduction to Database Development

 page 14

bookings.cshtml
@{
 var db = Database.Open("gcutourswm");
 var selectQueryString = "SELECT * FROM Bookings";
 }

<!DOCTYPE html>
<html>
 <head>
 <title>GCUTours bookings</title>
 </head>
 <body>
 <h1>GCUTours bookings</h1>
 <table>
 <thead>
 <tr>
 <th>Booking ID</th>
 <th></th>
 <th></th>
 </tr>
 </thead>
 <tbody>
 @foreach (var row in db.Query(selectQueryString)){
 <tr>
 <td>@row.bookingID</td>
 <td><a href="editbooking.cshtml?bookingID=
 @row.bookingID">edit</td>
 </tr>
 }
 </tbody>
 </table>
 </body>
</html>

 M1G505190: Introduction to Database Development

 page 15

editbooking.cshtml

@{
 var id = Request["bookingID"];
 var adults = Request["adults"];
 var children = Request["children"];

 var db = Database.Open("gcutourswm");
 var selectQueryString =
 @"SELECT * FROM Bookings, Users
 WHERE Bookings.username = Users.username
 AND bookingID = @0";
 var result = db.Query(selectQueryString, id).FirstOrDefault();

 if (IsPost) {
 var updateQuery = @"UPDATE Bookings
 SET adults = @0, children = @1
 WHERE bookingID = @2";
 db.Execute(updateQuery, adults, children, id);

 Response.Redirect(@Href("~/bookings.cshtml"));
 }
 }

<!DOCTYPE html>

<html lang="en">
 <head>
 <meta charset="utf‐8" />
 <title>GCUTours edit booking</title>
 </head>
 <body>
 <h1>GCUTours edit booking</h1>
 <form method="post" action="">
 <input type="hidden" name="bbookingID" value="@id" />
 <p>Booking ID: @result.bookingID</p>
 <p>User: @result.lastname, @result.firstname</p>
 <p>TourID: @result.tourID</p>
 <p>Adults: <input name="adults" type="text" size="5"
 value="@result.adults" /></p>
 <p>Children: <input name="children" type="text" size="5"
 value="@result.children" /></p>
 <p><input type="submit" value="Update" /></p>
 </form>
 </body>
</html>

