
 M1G413283: Introduction to Programming 2

 page 1

LAB 2: A Java bank account

Getting started

In this lab you create and test Java classes which might form part of a bank system. The
completed system will consist of three classes, Account, Transaction and
Customer. You will be given partially complete code for the Account and
Transaction classes and you will complete and test these classes.

An account object will contain an array of transactions and will be associated with a
customer. The class diagram is shown below:

The object diagram when several transactions have been recorded might look like this:

account1:Account

transactions

Transactions[0]:
Transaction transactions:

Transaction[]

 [0]

 [1

 [2]

 [3]

customer

...up to [10]

Transactions[1]:
Transaction

Transactions[2]:
Transaction

customer:
Customer

 M1G413283: Introduction to Programming 2

 page 2

Task 1: Complete the Transaction class

1. Download and open the BlueJ project lab2. Note that there are three classes.

2. The Customer class is already complete. Open it in the editor and review the
code.

3. Open the Transaction class in the editor. There are several comments in the

code indicating what has to be done to complete the class.

4. // TO DO: instance variables
Replace this comment with the following instance variable declarations:

• A double field called amount

• A String field called type

• A String field called reference

• A Date field called date. Note that Date is a library class which represents

a date, and provides many functions helpful for working with dates.

A library class needs to be imported before it can be used. Add the following
line at the top of your class, replacing // TO DO: import library classes

import java.util.Date;

You will see more examples of library classes in the lectures.

5. // TO DO: constructor

Replace this comment with a constructor which takes four parameters and uses
these to set the values of the four instance variables.

6. // TO DO: getters for instance variables

Replace this comment with getter methods for all four instance variables (no
setter methods are required)

7. // TO DO: getDateString method

In addition to the getter, it will be useful to have a method which converts date to
a String with a specific date format. Replace this comment with a method
getDateString which takes no parameters and contains the following code:

SimpleDateFormat formatter = new SimpleDateFormat(
 "EEE, MMM d, yyyy");
String dateString = formatter.format(date);
return dateString;

 M1G413283: Introduction to Programming 2

 page 3

Make sure you choose the correct return type for this method. You will also need
to import the library class java.text.SimpleDateFormat with an import
statement immediately after the first import.

8. Test the Transaction class in BlueJ as follows:

• Create a new instance of Transaction in the Object Bench, entering the

following values for the constructor parameters:

o 200.00
o “CREDIT”
o “ref1”
o new java.util.Date() - this actually creates a new Date object

• Call all the getter methods to check that all instance variables have been set

correctly.

• The getDate method should return a Date object, and you can’t easily see
what date it represents. Call the getDateString method. What date does
the Date field represent?

Follow up:

Open assignment Lab 2 in Blackboard.

Copy and paste your Java code for the Transaction class into the appropriate box in
the assignment, and answer the two questions which follow.

 M1G413283: Introduction to Programming 2

 page 4

Task 2: Completing the Account class
Set up the instance variables:

1. Open the Account class in the editor. There are several comments in the code
indicating what has to be done to complete the class.

2. // TO DO: declare customer

Replace this comment with a declaration of an instance variable customer of type
Customer.

3. // TO DO: declare array of transactions

Replace this comment with a declaration of an instance variable called
transactions which is an array of type Transaction.

4. Now find the constructor of the Account class. There are two comments to be

replaced in the constructor.

5. // TO DO: set customer
Replace this comment with a statement which sets the value of the customer
instance variable to the relevant parameter value.

6. // TO DO: create new array for transactions

Replace this comment with a statement which initialises the transactions
instance variable to be a new array of Transaction objects whose size is the
constant MAX_TRANSACTIONS.

7. Compile the Account class. Test the Account class in BlueJ as follows:

• Create a new instance of Customer in the Object Bench, entering the

following values for the constructor parameters:

o “Fernando”
o “Alonso”

• Create a new instance of Account in the Object Bench, with the following

values for the constructor parameters:

o the Customer object in the Object Bench
o “12345”

 M1G413283: Introduction to Programming 2

 page 5

• Inspect the Account object in the Object Bench. Select the transactions

field in the Object Inspector, and now inspect this field by clicking the Inspect
button. You should see something like the figure below.

• Close the Object Inspector windows.

 M1G413283: Introduction to Programming 2

 page 6

Read transactions from a file:

1. Call the readTransactions method of your Account object. You should see
an error message in the terminal window.

2. Find the readTransactions method in Account. This method reads data from

a text file and uses the data to create Transaction objects. The file,
transactions.txt, is inside your BlueJ project folder. Each line of the file contains
the four pieces of information needed to construct a Transaction object, and
there are three lines, as follows:

200.00,CREDIT,ref1,1/12/2009
550.00,DEBIT,ref2,24/12/2009
100.00,CREDIT,ref3,7/1/2010

The code in readTransactions uses some techniques which we do not have
time to study in depth here, so in this exercise you will simply add some code to
complete the method.

3. The reason for the error message was that the name of the file which contains

the data was not specified correctly. Find the comment

 // TO DO: make filename a constant.
In this line, replace “wrong_name” with the name of a constant, FILENAME.

4. You will need to define the constant FILENAME. Go back to the top of the

Account class and find the definition for the constant MAX_TRANSACTIONS.
Find the comment

 // TO DO: define constant for filename
Replace this comment with a new String constant definition for FILENAME =
“transactions.txt”.

NOTE: file input/ouput is a common source of errors, if for example you try to read a
file that does not exist. Errors can cause a program to “crash” if not handled properly.
Note that most of the code in this method is placed inside a try block, with a catch
block to handle and warn about any errors, or exceptions, which occur. With this
structure, the program can continue after a file error.

try
{
 Code which may cause an error...
}
catch(Exception e)
{
 Handle the error...
}

 M1G413283: Introduction to Programming 2

 page 7

5. Return to the readTransactions method. The code reads each line of the file,

within a while loop, and uses the data to set the values for four variables:

o amount
o type
o reference
o date

The number of lines read so far is stored in a variable count which is
incremented each time round the loop.

6. // TO DO: create transaction and store in array

Replace this comment with a statement which constructs a new Transaction
object using these values as parameters.

7. Add a statement immediately after this which sets the element of the

transactions array with index count to refer to the Transaction object you
have just constructed.

8. // TO DO: update number of transactions

Replace this comment, which is positioned after the end of the loop when all
transactions have been read, with a statement which sets the value of the
numberOfTransactions instance variable to count.

9. Compile the Account class. Test the Account class in BlueJ by creating

Customer and Account objects as in the previous test.

• Now call the readTransactions method of the Account object. You

should get a reassuring message in the terminal window.

• Inspect the Account object and its transactions field as before. You
should see that the array now has some objects in it.

 M1G413283: Introduction to Programming 2

 page 8

Displaying transactions and updating the balance

1. Find the displayTransactions method in the Account class.

2. // TO DO: loop through transactions and display
Replace this comment with a for loop which prints out the details of each
transaction in the transactions array. Use the following code inside your for
loop (your loop count variable should be called i):

Transaction trans = transactions[i];

System.out.format("£%4.2f %s %s %s\n",
 trans.getAmount(),
 trans.getType(),
 trans.getReference(),
 trans.getDateString());

3. Compile the Account class. Repeat the previous test, and this time also call the
displayTransactions method. You should see the following output:

4. Find the updateBalance method in the Account class.

5. // TO DO: loop through transations and add amount to/subtract
// amount from balance
Replace this comment with a for loop which adds the amount of each
transaction to the balance instance variable if the transaction type is “CREDIT”,
or subtracts it if it is “DEBIT”. Use the following code to add or subtract the
amount:

 M1G413283: Introduction to Programming 2

 page 9

if (trans.getType().equals("CREDIT"))
{
 balance = balance + trans.getAmount();
}
else if(trans.getType().equals("DEBIT"))
{
 balance = balance ‐ trans.getAmount();
}

5. Compile the Account class. Repeat the previous test, and this time also call the
getBalance method. You should get a return value of -250.00.

Follow up:

Continue with assignment Lab 2 in Blackboard.

Copy and paste your Java code for the Account class into the appropriate box in the
assignment, and answer the two questions which follow.

If you have not completed all tasks, then paste the code as it is at the point you have
reached.

NOTE: the correct way to check whether strings are equal is to use equals – you
should not use == for strings, as this does not always work as you would expect.

