
 M1G413283: Introduction to Programming 2  

 page 1 

LAB 3: A Java bank account application 

Getting started 
 
In this lab you will complete and test a Java application to mange account transactions in 
a bank system. The completed application will consist of four classes, 
AccountManager,  Account, Transaction and Customer.  
 
You will be given complete code for the Account, Transaction and  Customer 
classes.  The Account class is an extended version of the class you created in the 
previous lab, and you will test this class.  
 
You will be given partially complete code for the AccountManager class, which will 
create a simple text-based user interface for listing, adding and deleting transactions. 
You will complete and test the application. 
 
As before, an account object will contain an array of transactions and will be associated 
with a customer. The class diagram is shown below: 
 

 
 
 
The object diagram when several transactions have been recorded might look like this: 
 

 



 M1G413283: Introduction to Programming 2  

 page 2 

Task 1: Unit testing: the Account class 
Review class documentation: 
 

1. Download and open the BlueJ project lab3. Note that there are four classes. The 
Customer and Transaction classes are the same as in the previous lab. 
 

2. The Account class is already complete. Unlike the version in the previous lab, it 
does not read transactions from a file. Instead, this version is intended to be used 
by another class which handles the input of transaction data. 

 
3. Open the Account class in the editor. Look at the code at the top of the file. Note 

that there is an array of Transaction objects whose size is defined by a constant 
as before. There is a field of type Customer which is initialised in the constructor 
as before. 
 

4. Switch from Source Code to Documentation view in the editor. Find the Method 
Summary part of the documentation page, and note that the class has methods 
for adding, finding and removing transactions. 
 

5. Click on  getTransaction. You should now see the detail documentation for 
that method. Note the Parameters and Returns information. 
 

6. Switch back to Source Code view. Find the getTransaction method. Note 
how the Javadoc comment for the method relates to the documentation 
produced. 

 

Create a test class: 
 

1. Make sure that the unit testing tools in BlueJ are active. You should see the 
following controls in the main BlueJ window: 
 

 
 
If not, select the Tools > Preferences menu option. Select the Miscellaneous tab 
and check the Show Unit Testing Tools option (see figure on next page). 
 



 M1G413283: Introduction to Programming 2  

 page 3 

 
 

2. Right-click the Account class in the BlueJ class diagram. Select Create Test 
Class from the menu. A new unit test class, AccountTest, will be added to the 
project. 
 

 
 
 

3. Now create some test objects in the Object Bench: 
 
• A Customer object with parameter values: “Michael”, “Schumacher” 

 
• A Transaction object with parameter values:  

200.00, “CREDIT”, “ref1”, new java.util.Date() 
 

• A Transaction object with parameter values:  
100.00, “DEBIT”, “ref2”, new java.util.Date() 
 

• A Transaction object with parameter values:  
300.00, “CREDIT”, “ref3”, new java.util.Date() 

 
• An Account with parameter values: 

customer1 (your Customer object in the Object Bench), 
“12345” 
 

4. Now add the transactions to the account: 
 

• Right-click on the Account object in the Object Bench and call its 
addTransaction method. Give your first Transaction object as the 
parameter in the Method Call dialog (see figure on next page). 



 M1G413283: Introduction to Programming 2  

 page 4 

 

 
 

• Add your other two Transaction objects to the Account in the same way. 
Inspect the Account object to confirm that there are three objects in its 
transactions array. 

 
5. Right-click the AccountTest class and select Object Bench to Test Fixture. 

Your objects should disappear from the Object Bench 
 

6. Open the AccountTest class in the editor and review the code in the setup 
method. 

 
7. Your test class is now able to set up a collection of test objects which can be 

used to test the Account class. Right-click the AccountTest class and select 
Test Fixture to Object Bench. A set of objects should appear in the Object Bench. 
Inspect the Account object in the Object Bench to confirm that there are three 
objects in its transactions array. 

 
 

Create a test method in the test class: 
 

1. Right-click on the AccountTest class and select Create Test Method. Name the 
method testAddTransaction. This test will check that transactions have been 
correctly added to the account. The red “light” shows that BlueJ is now recording 
your test, and your test objects will appear in the Object Bench if they are not 
already there. 

 

 
 

2. Create a new Transaction object with parameter values:  
200.00, “CREDIT”, “test”, new java.util.Date() 
 
 



 M1G413283: Introduction to Programming 2  

 page 5 

3. Use the addTransactions method to add this Transaction to the Account. 
 
The account should now have four transactions and its balance should be £600 – 
actually there is a bug in the code for Account, so the balance will not be £600! 
You will fix this bug later on. 

 
4. Call the getNumberOfTransactions method of the Account object. There 

should now be four transactions, so in the Method Result dialog choose to assert 
that the method result is equal to 4. 

 

 
 

5. Click the End button to stop recording. 
 

6. You have recorded a test method which checks the number of transactions after 
adding a new transaction. We would like it to also check that the account balance 
is updated correctly, and that the new transaction is in the correct place in the 
array. To do this, you will add code to the test method rather than recording. 

 
7. Open the AccountTest class in the editor, and find the testAddTransaction 

method.  
 

8. Add the following code to the method 
 
assertEquals(600.00, account1.getBalance()); 
assertEquals("test",  
    account1.getTransactions()[3].getReference()); 
 
The second line gets the value of the reference field of the fourth element of the 
transactions array. 
 

9. Click the Run Tests button. The Test Results window should show a test failure 
as there is a bug in the code which you have been given for the Account class. 
 
 
 
 



 M1G413283: Introduction to Programming 2  

 page 6 

10. Try to find the bug and fix it (hint: look at the code in the updateBalance 
method)  
 
If you wish, you can try using the BlueJ Debugger to help, as follows: 
 
• Right-click the AccountTest class and select Test Fixture to Object Bench. 

Your test objects should appear in the Object Bench. 
 

• Create a new Transaction object with parameter values:  
200.00, “CREDIT”, “test”, new java.util.Date() 
 

• Set a break point at the first line of code inside the updateBalance 
method.  
 

• Use the addTransactions method to add this Transaction to the 
Account. The code execution should stop at the breakpoint. 
 

• Use the Step button to execute the code line-by line and observe how the 
value of the balance instance variable changes each time round the loop. 
Think about your test objects and consider what the value of balance should 
be each time. 
 

 
 
 
 

•   
 

 
 
 
11. When you think you have fixed the code, run the test again to confirm this. 

click in margin to 
set break point 

arrow shows 
instruction to be 
executed next 

use Step or Step Into to 
go to next instruction 

debugger opens when 
execution stops at break point 

current values 
of variables 



 M1G413283: Introduction to Programming 2  

 page 7 

Create an additional test method: 
 

1. Add another test method to the AccountTest class to test the 
removeTransaction method of Account. You can record your test or write 
code for it as you prefer. 

 
Note that when tests run, the setup method is run before each test method. 
This means that when your new test starts, the account will contain the three 
transactions defined in setup. 
 

2. Click Run Tests again. This will run both test methods. Confirm that both 
methods are now working correctly. 

 

NOTE: Terminating running code 

Sometimes a program stops responding and “hangs” indefinitely. If your code running in 
BlueJ appears to hang, then you can stop execution in one of two ways: 

If code is currently executing, the Work Indicator bar in the main BlueJ windows will be 
red and white, as shown. You can right‐click the bar and select Reset Machine. 

 

If the Debugger is open, you can click the Terminate button:  

   

 

 

Follow up: 
 
Open assignment Lab 3 in Blackboard.  
 
Copy and paste your Java code for the AccountTest class into the appropriate box in 
the assignment, and answer the two questions which follow. 

 



 M1G413283: Introduction to Programming 2  

 page 8 

Task 2: Completing and testing the application 
Look at the AccountManager class:  
 

1. Open the AccountManager class in the editor. There are several comments in 
the code indicating what has to be done to complete the class. 

 
2. Review the instance variables. Note that there is a variable called reader, of 

type Scanner. Scanner is a library class which allows keyboard input to be read 
from the terminal window. There is also an instance variable called account of 
type Account. This will be the account that the application manages. 
 

3. Find the printMenu method. Note that this method prints out a menu with a set 
of options.  
 

4. Find the start method. Review the code and note the following: 
 
• There is a while loop which causes the menu to be displayed repeatedly until 

the value of finished becomes true 
 

• The Scanner variable, reader, is used to get the user’s menu choice 
 

• The code opt = Integer.parseInt(input) is used to convert the input 
to an integer.  
 
This is done inside a try-catch block – why do you think this is? 
 

• An if statement with a series of else if statements is used to select the action 
to be taken for each possible user input. 
 
Incidentally, there is actually a better way of doing this, using a switch 
statement, which you will see in your lectures 
 

• The quit option simply sets finished to true. 
 

Complete the main method: 
 

1. // TO DO: set up account and launch application 
Find the main method. This will be the entry point for running the application. 
Replace this comment  by writing code which: 
 
• Creates a new Customer object called customer with parameter values: 

“Rubens”, “Barrichello” 
 

• Creates a new Account object called account with parameter values:  
customer, “88888” 
 



 M1G413283: Introduction to Programming 2  

 page 9 

• Creates a new AccountManager object called manager with parameter 
value  account 
 

• Launches the application by calling the start method of manager 
 

This will allow the application to be run. It will display the menu, but the options 
will not be fully implemented yet. 

 

Run the application in BlueJ: 
 

1. Right-click the AccountManager class in the BlueJ class diagram and select 
void main(String[] args). Click OK in the Method Call dialog. The application will 
start up in the BlueJ Terminal Window, and the menu will be displayed. 

 

 
 
You can run the application in this way to test each of the menu options as you 
complete the code to make them work correctly. 
 

Complete the AccountManager class: 
 

Add code as described in each of the following steps to complete the 
AccountManager class. You can test your code after each of these steps by running 
the application as described above. 
 
1. // TO DO: list account details 

Find the listDetails method. Replace this comment with a call to the 
printDetails method of account. 

 
2. // TO DO: get transaction with specified reference  

Find the listDetailsOfTransaction method. This method reads user input 
into the variable reference. Replace the comment with code which gets the 
relevant transaction from account and prints its details. 
 

 



 M1G413283: Introduction to Programming 2  

 page 10 

3. // TO DO: get reference 
Find the recordTransaction method. This method reads user input into 
variables which are then used to construct a Transaction object. The code to 
read amount and type is given. Replace the comment with code to read the 
value of reference. 

 
// TO DO: create transaction and add to account 
Look further down the recordTransaction method.    Replace this comment 
with code which constructs a new Transaction object and adds it to account. 

 

Test the application in BlueJ: 
Run the completed application and test by selecting menu options and entering 
suitable data to: 
 
• Add some new transactions 
• List the account details 
• List details of one of the transactions 
• Delete a transaction  
• List the account details again 
 
Example output during a test is shown below: 
 

 



 M1G413283: Introduction to Programming 2  

 page 11 

 
Note that this is system testing, of the completed application, not unit testing.  
 
However, even once the application is complete, unit tests should be repeated 
whenever any part of the code is changed, for example if a new version is 
created to add new features or fix bugs. 

 

Run the application from the command prompt: 
 

You do not expect users of your application to run it in BlueJ. Applications are 
usually run by clicking on an icon or typing a command at a command prompt. 
You will now prepare your application to be run at the system command prompt. 

 
1. Select the Project > Create Jar File... menu option in BlueJ. This will package the 

contents of your project into a single, executable file, called a Jar. This is similar 
to a Windows .exe file. 

 
The main method, which is the entry point which the operating system needs to 
launch the application is in the AccountManager class, so you need to specify 
that this is the main class in the Create Jar File dialog. 

 

 
 

2. Click Continue. Choose a location for the Jar file, for example the root folder of 
the C: drive. Save the Jar file as accountmanager.jar. 
 

 



 M1G413283: Introduction to Programming 2  

 page 12 

3. Open a system command prompt – in Windows, select the Run option from the 
Start menu, and enter cmd in the Run box. 

 
4. In the command prompt window, change directory to the location where you 

stored the Jar, for example by entering cd c:\ 
 

5. Enter the command: 
 

 java –jar accountmanager.jar 
 
 
If Java is correctly configured on your computer your application should launch in 
the command prompt window as shown below. You can do system testing as 
before. 
 

 
 
 

Follow up: 
 
Continue with assignment Lab 3 in Blackboard.  
 
Copy and paste your Java code for the AccountManager class into the appropriate box 
in the assignment, and answer the two questions which follow. 
 
If you have not completed all tasks, then paste the code as it is at the point you have 
reached. 
 
 
 
 
 
 
 
 
 
 



 M1G413283: Introduction to Programming 2  

 page 13 

  

use Step or Step Into to 
go to next instruction 


