
 M1G413283: Introduction to Programming 2

 page 1

LAB 4: A Java order system

Getting started

In this lab you will create or complete some Java classes to mange orders in an
ecommerce system. The completed application will consist of four classes, Order,
OrderLine, Product and DiscountOrderLine.

You will be given complete code for the Product class. You will use a code generator
tool within BlueJ to help you create the Order and OrderLine classes, and you will
create the DiscountOrderLine class yourself.

An order object will contain a collection of order line and discount order line objects,
each of which will contain a product object. A discount order line is a special version of
an order line which can apply a discount to the standard product price.

The class diagram is shown below:

Order OrderLine

1 *

Product

1 1

DiscountOrderLine

 M1G413283: Introduction to Programming 2

 page 2

Task 1: Creating the Order and OrderLine classes
Installing code patterns in BlueJ:

BlueJ has a PatternCoder option1 which lets you create two or more classes which work
together in a commonly used way, or pattern. BlueJ creates the classes and sets up the
fields which define the relationships, and some useful methods.

The classes created by BlueJ have the relationships and some common methods set up
correctly, but you need to modify them to provide the correct functionality for your
application.

1. Before you start working in BlueJ, you will need to install some files which allow
BlueJ to use the patterns you need for this lab, as follows:

2. Download the file PatternFiles.zip and save it in the folder

c:\bluej\lib\extensions. Extract the contents of the zip file into that folder.

When you have done this you should check that the pattern files are in the
correct place:

• Open the folder C:\BlueJ\lib\extensions\PatternFiles. This folder should

contain a number of XML files, including HasAList.xml.

• Open the subfolder templates inside. This folder should contain a number of
folders, including HasAList.

• Go back up one level and open the subfolder images. This folder should

contain a number of BMP files, including HasAList.bmp.

1 Requires the PatternCoder extension for BlueJ (http://www.patterncoder.org).

 M1G413283: Introduction to Programming 2

 page 3

Creating related classes: Order and OrderLine

1. Download, extract and open the BlueJ project lab4. Note that there is a single
class Product in the project. This class is already complete. You will now create
the Order and OrderLine classes.

2. The one-to-many relationship between Order and OrderLine is intended to

mean that one Order contains many OrderLines Each OrderLine is owned
by the Order. An Order has-a collection of Orderlines.

3. You have seen examples before of classes which have has-a relationships, and
we have described the coding patterns for creating these. You could use these
examples to help you create the code for Order and OrderLine. The Order
class will need a set of methods to allow it to:

• Add a new OrderLine
• Find and return a specific OrderLine
• Return the whole collection of OrderLines
• Remove a specific OrderLine

To make this a bit easier, you can use the PatternCoder option to generate
classes with the correct relationship already set up.

4. Select the Tools > PatterCoder menu option and choose the best option for this
relationship in the Pattern Options list. There are two possibilities for a one-to-
many relationship like this: Has-a (Array) and Has-a (List). We will choose Has-a
(List) as this will give the advantages of using an ArrayList.

The PatternCoder dialog shows a diagram and some additional information about
the pattern.

 M1G413283: Introduction to Programming 2

 page 4

5. In the following steps, replace the name Whole with Order, and Part with
OrderLine, and click Finish. The two classes, Order and OrderLine are
added to your BlueJ project. You can drag the classes in the class diagram to
position them so that you can see them clearly, and then click the Compile
button. The classes should compile successfully.

Looking at the basic classes:

1. Double-click the Order class to see in the editor the code which has been
created

The one-to-many relationship between Order and OrderLine has been
implemented by giving the Order class a multivalued field. This is an
ArrayList which holds OrderLine objects.

public class Order
{
 private List<OrderLine> theOrderLines;

2. Look through the rest of the code for the Order class. Order has been given

standard methods to add a new OrderLine, to find a specified OrderLine and
to remove a specified OrderLine. Note that these last two methods require the
target OrderLine to be specified using its description field value, and will
need to be slightly modified later.

3. Open the OrderLine class in the editor. OrderLine has no reference to any

Order objects. It simply has a description field.

 M1G413283: Introduction to Programming 2

 page 5

Testing the basic classes:

1. Before you go on and modify these classes, you should test that they work.
Create the following objects in the Object Bench

order1 new Order, description = “example order”
orderLin1 new OrderLine, description = “example orderline 1”
orderLin2 new OrderLine, description = “example orderline 2”
orderLin3 new OrderLine, description = “example orderline 3”

2. Call the addOrderLine method of order1, and supply orderLin1 as the
parameter. Repeat for the other OrderLine objects.

3. Call the printDetails method of order1. You should get the following output in
the BlueJ terminal window:

This Order object (description: example order) contains the
following OrderLine objects:
description: example orderline 1
description: example orderline 2
description: example orderline 3

This demonstrates that the objects are correctly related and that addOrderline
works as expected.

4. Call the getOrderLine method of order1, and supply “example orderline 2” as
the parameter. Check that the appropriate OrderLine object is returned. Repeat
for an invalid value of the parameter – what is returned?

5. Call the removeOrderLine method of order1, and supply “example orderline 2”

as the parameter. Call printDetails again and check that the object was
removed.

6. This demonstrates that the getOrderLine and removeOrderLine methods
work as expected.

You have achieved quite a lot at this point. You should have two related classes
with all aspects of the relationship fully working. And you haven’t actually written
any code yet! You are, however, now ready to add the code which will make
these classes properly represent Orders and OrderLines. You will need to write
this code.

THINK ABOUT IT: You could have done these tests with the help of the unit
testing tools in BlueJ. How would you have done this?

 M1G413283: Introduction to Programming 2

 page 6

NOTE

To help you understand a coding pattern, you can use PatternCoder to create more
examples to study. You could, for example, use the Has‐a (List) pattern to create other
pairs of classes, such as Department and Employee, Team and Player,
Customer and Booking, and so on. Look at the code which is created – what
changes, and what stays the same? Try using the Has‐a (Array) pattern instead – how
does the code differ? The more examples you see, the easier it will be to write the full
code yourself to implement a pattern in future.

Adding the real functionality for OrderLine:

Your two classes are not very useful yet. You will have to modify them to do something a
bit more useful.

1. Remove the declaration of the example instance variable description and
replace this with declarations of the following instance variables:

• an int variable called lineNumber
• an int variable called quantity
• a Product variable called product

2. Modify the constructor of OrderLine so that it takes three parameters and sets

the values of the three new instance variables.

3. Add another constructor for OrderLine which takes one parameter and sets the
value of the lineNumber variable. (Note: this is needed by the methods in
Order which get and remove OrderLines).

4. Add a default constructor for OrderLine which takes no parameters and doesn’t
do anything at all, like this:

public OrderLine() {}

 (Note: this is needed for part of task 2 of this lab to work correctly)

5. Modify the javadoc comment for the constructor to match the modified code.

6. Remove the getter and setter methods for description, and replace these with
getters (no setters) for the three new instance variables.

7. Add a new method getCost which takes not parameters and returns a double

value calculated by multiplying the cost of the product by quantity. You will
need to look at the Product class to see how to get the cost of a product.

 M1G413283: Introduction to Programming 2

 page 7

8. Replace the return statement in the toString method with the following:

return String.format(

"Line: %d, Product: %s, Quantity: %d, Cost: £%6.2f",
 lineNumber,
 product.getProductName(),
 quantity,
 getCost());

9. Find the equals method. This method is needed so that the ArrayList in

Order can search through the OrderLine objects it contains. As it is currently
defined, two OrderLine objects are considered equal if their description
values are equal. You need to change this to identify OrderLine objects by their
lineNumber values.

Change the line:

if (this.description.compareTo(test.description) == 0)

to

if (this.lineNumber==test.lineNumber)

10. Compile the OrderLine class.

11. If you have time, add Javadoc comments for the methods you have created in

OrderLine.

Modifying Order to use OrderLine:

Your Order class will now not compile because it searches by description when
getting and removing OrderLines. You will need to change this so that it searches by
lineNumber instead

1. Find the getOrderLine method. Replace the lines:

 public OrderLine getOrderLine(String description)
 {
 OrderLine target = new OrderLine(description);

with:

 public OrderLine getOrderLine(int lineNumber)
 {
 OrderLine target = new OrderLine(lineNumber);

 M1G413283: Introduction to Programming 2

 page 8

2. Make similar changes to the removeOrderLine method.

3. Compile the Order class.

Testing the modified classes:

1. Create the following objects in the Object Bench

order1
new Order, description = “example order”

product1
new Product, productCode = “P1”, productName = “widget”, cost = 3.00
product2
new Product, productCode = “P2”, productName = “gadget”, cost = 5.00
product3
new Product, productCode = “P3”, productName = “sprocket”, cost = 7.00

orderLin1
new OrderLine, lineNumber=1,product = product1, quantity = 5
orderLin2
new OrderLine, lineNumber=2,product = product2, quantity = 2
orderLin3
new OrderLine, lineNumber=3,product = product3, quantity = 10

2. Create a test class for Order and copy these objects from Object Bench to Test
Fixture so that you can repeat tests easily if necessary. Copy back from Test
Fixture to Object Bench to continue testing.

3. Add the three OrderLine objects to order1.

Call the printDetails method of order1. You should get the following output
in the BlueJ terminal window:

This Order object (description: example order) contains the
following OrderLine objects:
Line: 1, Product: widget, Quantity: 5, Cost: £ 15.00
Line: 2, Product: gadget, Quantity: 2, Cost: £ 10.00
Line: 3, Product: sprocket, Quantity: 10, Cost: £ 70.00

 M1G413283: Introduction to Programming 2

 page 9

4. Remove the order line with line number 2 from order1.

Call the printDetails method of order1. You should get the following output
in the BlueJ terminal window:

This Order object (description: example order) contains the
following OrderLine objects:
Line: 1, Product: widget, Quantity: 5, Cost: £ 15.00
Line: 3, Product: sprocket, Quantity: 10, Cost: £ 70.00

You have now completed your Order and OrderLine classes.

THINK ABOUT IT: We haven’t modified the Order class very much. What
properties and methods do you think we could have put in that class to
make it represent an order more realistically?

Follow up:

Open assignment Lab 4 in Blackboard.

Copy and paste your Java code for the OrderLine class into the appropriate box in the
assignment, and answer the two questions which follow.

 M1G413283: Introduction to Programming 2

 page 10

Task 2: Creating the DiscountOrderLine class
The class DiscountOrderLine will be a subclass of OrderLine, and is an example
of the concept of inheritance in object-oriented programming.

Creating a subclass:

1. Add a new class called DiscountOrderLine and open it in the editor.

2. Make this class a subclass of OrderLine by modifying the class declaration to:

public class DiscountOrderLine extends OrderLine

3. Compile the new class and check that the relationship between OrderLine and
DiscountOrderLine is shown in BlueJ like this:

4. Delete the existing sample code within DiscountOrderLine.

5. Add a new instance variable of type char, called discountCode. Note that a
DiscountOrderLine object now has this new instance variable and also the
instance variables of the OrderLine class which it inherits.

6. Add a new constructor which takes four parameters:

• lineNumber of type int
• product of type Product
• quantity of type int
• discountCode of type char

The constructor should use the discountCode parameter to set the relevant
instance variable

It should pass the other parameters to the constructor of the superclass,
OrderLine, like this:

super(lineNumber,product,quantity);

 M1G413283: Introduction to Programming 2

 page 11

7. Add a new method called getDiscount which takes no parameters and has a
return type of double.

Write code in this method to return a value which represents a percentage
discount. The value returned should depend on the discountCode instance
variable, as follows:

discountCode getDiscount
A 5
B 10
C 15

8. Add a method called getCost which takes no parameters and returns a double

value. This method has the same signature as a method in OrderLine, and
overrides that method.

As in OrderLine, this method should multiply the cost of the product by
quantity, and should also apply the percentage discount obtained by calling
getDiscount before returning the final value.

9. Compile the DiscountOrderLine class. You should get a compilation error:

product has private access in OrderLine

10. Open the OrderLine class in the editor. Change the key word in the
declaration of the instance variables product and quantity from private to
protected. This gives subclasses (but not any other classes) direct access to
these variables.

Both classes should now compile successfully.

Testing the subclass:

1. Create the following objects in the Object Bench

product1
new Product, productCode = “P1”, productName = “widget”, cost = 5.00

discount1
new DiscountOrderLine, lineNumber=1,product = product1,
quantity = 10, discountCode = ‘B’

2. Call the getCost method of discount1. Check that a 10% discount has been
applied, giving a cost of 45.00.

This demonstrates that the DiscountOrderLine class is working correctly.
Now we need to test that it works with the Order class.

 M1G413283: Introduction to Programming 2

 page 12

3. Create the following additional objects in the Object Bench
order1
new Order, description = “example order”

orderLin1
new OrderLine, lineNumber=2,product = product1, quantity = 10

Note that this is the same product and quantity as in the discount order line.

4. Add orderLin1 to order1

5. Add discount1 to order1 – you can do this as a discount order line is-a type of
order line.

6. Call the printDetails method of order1. You should get the following output
in the BlueJ terminal window:

This Order object (description: example order) contains the
following OrderLine objects:
Line: 2, Product: widget , Quantity: 10, Cost: £ 50.00
Line: 1, Product: widget , Quantity: 10, Cost: £ 45.00

This demonstrates that an Order can contain a mixture of OrderLine and
DiscountOrderLine objects – this is polymorphism in action!

Follow up:

Continue with assignment Lab 4in Blackboard.

Copy and paste your Java code for the DiscountOrderLine class into the appropriate
box in the assignment, and answer the two questions which follow.

If you have not completed all tasks, then paste the code as it is at the point you have
reached.

this is actually a
DiscountOrderLine object

 M1G413283: Introduction to Programming 2

 page 13

Extra Task: A GUI application which uses these classes
In this lab you have created and tested objects, but you have not built an application. If
you wish, you can try out a simple GUI application which makes use of the classes you
have developed.

This application displays the order lines for an order, and allows new order lines to be
added and the quantity value in existing order lines to be updated. It’s not really a
complete application, but might be a window for editing orders which is forms part of a
larger application.

1. Add two new classes OrderForm and About to your project. Replace the code
in these with the contents of the files OrderForm.java and About.java which you
can download.

The code in these classes is rather complicated, so don’t worry about how it all
works. However, you should find and look at the createOrder method. You can
see that this uses your own classes to create some objects.

Compile the new classes.

2. Right-click on OrderForm in the BlueJ class diagram and call the main method.

Click OK in the Method Call dialog. An application window should appear,
displaying details of the objects created in the createOrder method.

You can experiment viewing, updating and adding order lines. Call the Menu >
Exit option to quit the application.

3. Select the Project > Create Jar File... menu option in BlueJ. Choose OrderForm

as the main class in the Create Jar File dialog and save on the desktop as
orderform.jar.

4. Find the orderform.jar icon on the desktop and double-click to run the application.

