

School of Engineering and Computing

INTRODUCTION TO PROGRAMMING 2

 M1G413283

07/01/11 JP

 M1G413283: Introduction to Programming 2

 page 2

1. Designing a program

Introduction ... 2
Java Programs .. 2
Classes ... 4
The GCU adventure game .. 4
Objects in the adventure game ... 5
Modelling the adventure game .. 6
Designing vs. implementing programs .. 7
What’s next? .. 8

Introduction
In your course you have learned about the process of analysis and design of Computer
Systems, and you have seen examples of the ways in which a system can be modelled
using, for example, class diagrams. You have also seen how a model of the data in the
system can be used to help design a database to store information which needs to be
kept permanently.

A model can also be used to help design and create the software application, or
program, which actually carries out the functions which the system is required to
perform.

You have also learned some of the basic concepts and techniques for writing programs
in the Java programming language. In this module you will see how the programming
techniques you have learned can be used to create a working computer program. You
will also learn some useful new programming techniques.

Java Programs
A Java program can be anything from a few lines of code which perform a single
function, for example to add two numbers, to a large enterprise system consisting of
many Java classes which provide very complex services, for example managing the
customers and accounts of a bank.

Java is an object-oriented programming language. When an object-oriented program is
running, it creates objects which work together, or collaborate, to perform the required
actions. These objects often represent entities in the system. For example, the GCU

 M1G413283: Introduction to Programming 2

 page 3

Tours system you have seen previously will have objects representing customers,
bookings, and so on.

You can compare an object-oriented (OO) program to a team of people working in a
restaurant. In the restaurant, each person has a specific job to do, while there may be
several people doing the same type of job, waiters for example. The success of the
restaurant depends on everyone doing their job, but also, crucially, on the
communication between them. The waiters must pass orders to the kitchen; the head
chef must coordinate the cooks to get the parts of each dish ready at the same time; and
the kitchen must tell the waiters when dishes are ready to serve. Without this
communication, the diners will be kept waiting and will not get the food they ordered.
Similarly, objects in a computer system need to communicate, and the links between
these objects are a key part of the system design.

An OO program creates the objects it needs as it runs. To create an object, it needs to
have a template which specifies what type of object will be created and what that type
of object can do. This template is called a class. In fact, when you write a program, you
are actually writing the templates which are used to create objects. An object is a single
instance of a class – there can be many objects of the same type.

A class specifies the following for the objects it is used to create:

• The name of the type of object (e.g. Customer)
• The properties which each object will have (e.g. name)
• The actions which each object can perform (e.g. change password)
• The way in which each object is linked with other objects (e.g. with Booking

objects)

NOTE
Java is one of the most popular programming languages and is widely used in
industry. Other popular object‐oriented languages include C#, Visual Basic.NET
and C++.

Although OO languages are now the most widely used, there are a number of
other important types of language, including procedural languages like C and
functional languages such as Scheme. Some languages are used for specific
purposes, for example JavaScript and PHP, which are mainly used for web
applications. There are also general purpose languages which have elements of OO
and other language types, for example Python.

In your university career you will come across a number of languages. Many of the
techniques which you learn with Java have equivalents in other languages, and
once you learn Java it is relatively easy to adapt to others.

 M1G413283: Introduction to Programming 2

 page 4

Classes

The following UML class diagram shows some classes in the GCU Tours system. These
classes are typical of the entities you might find in a computer system used by a
company to manage its business, and represent the data, or information, which is
important to this particular company – users, bookings, and so on.

These particular classes will be implemented as Java classes which form part of a
program which performs actions like creating bookings and registering users. The
classes will also be implemented as database tables to store the information
permanently.

Not all classes in a real system represent information, though. A working program needs
objects which do other jobs, such as:

• Getting input from the user and displaying output
• Controlling the flow of activity while the program runs
• Other specialised tasks which help the program in some way, for example by

formatting output, getting information into and out of the database, and so on

The GCU Tours system becomes quite complicated when all the classes are included.
Instead, we will look at a simple example of a different kind of system, a game in fact,
which uses objects which do a range of jobs and work together as a complete program.

The GCU adventure game

The GCU game is a text adventure game (sometimes known as interactive fiction). Text
adventure games are a legacy from a time when computing power was small, when

 M1G413283: Introduction to Programming 2

 page 5

terminal access was commonplace, and when monochrome graphics was "state of the
art". Players used imagination, fired by descriptions of old abandoned caves, dungeons,
and even futuristic spaceships populated by Vogons. For example, the screenshot
shows the opening screen of the Hitchhiker’s Guide to the Galaxy text adventure.

OK, our own game is really not very adventurous. In fact it’s based on the “World of
Zuul” game in Barnes and Kölling’s book Objects First (highly recommended as
additional reading), which the authors describe as the “world’s most boring adventure
game”. It will do fine for our purposes, though.

The game centres around characters travelling through a world which consists of
rooms. Each room has a description. Rooms have exits which lead to other rooms.
Each room can contain several items which may be used by a character when in that
room. An item will also have a description. A player navigates through a world by typing
commands (go north, go south, quit, and so on). The game can be played by several
players.

Objects in the adventure game
We can use the description above to make a first attempt at designing a program which
will implement the game. What kind of objects will we need? The words highlighted in
bold may help. These are all nouns, and name some ‘things’ which may be objects in the
game. Let’s look at these:

• game – this will be an object which sets up the game world and controls the
game play. There will be only one Game object.

• room – this will be an object which represents a room in the game world. There

may be many rooms.

 M1G413283: Introduction to Programming 2

 page 6

• item – this will be an object which represents an item in a room. There may be

several items in each room.

• description – this simply describes a room or item, and will be a property
rather than an object in its own right

• exit – an exit from a room is really just a way into another room, so an exit is

actually a way of referring to a room object, not another type of object

• player – this will be an object which represents a player. A player will be in
one room at any point in the game. There may be several players in the game.
Each player should have a name, which is a property of the object.

• command – it may not be immediately obvious that a command will be an

object, but the job of representing players’ actions may be quite complicated. For
example, we need to check whether the words the player types are in fact a valid
command. Command objects will be useful, and there will be one object for
each input entered by a player.

Modelling the adventure game

 So let’s look at a first attempt at a model for the adventure game. Here is a class
diagram of the classes which will be needed to create these objects.

Game

-name
Player

-description
RoomCommand

-exit

-description
Item

The diagram shows Game, Room, Item, Player and Command classes, with properties
as described above. The links, or associations, between the classes show that objects

 M1G413283: Introduction to Programming 2

 page 7

will interact in some way. For example, a game object will interact with player objects.
We’ll look at these interactions in more detail as we go along.

Note that the Room class is linked to itself – this is because we noted above that a
room’s exit is actually a reference to another room object, so rooms can be linked with
each other

While it is not the only part of a model of a system, the class diagram is very important
when you start to build the system as a Java program. The classes become the Java
classes which you need to write. When we start creating our game in the next chapter,
we will start by creating some classes in Java.

Other UML diagrams can be used to add details to the model. For example, activity
diagrams are a kind of flow chart, and describe the flow of activity as the program runs.
Sequence diagrams and communication diagrams model the details of interactions
between objects. You have also seen use case diagrams which are used to model the
requirements for the system. These models, and others, are related to the details of the
code written within methods in the classes.

We will not be able to examine all these diagrams fully in this module.

Designing vs. implementing programs
You may be thinking that designing and modelling programs is difficult. You are right! It
takes experience to do it well, and you will learn more about program design in future
modules. In this module, we are mainly concerned with learning how to turn a model
which has already been created into working code.

REMEMBER
A program creates objects to do its work – it can only create an object if a
class has been written to provide a template for the object. If we want to
have player objects we need to write a Player class to define what player
objects are like.

The Player class will have a property called name – different player objects
will have different values for the name property.

 M1G413283: Introduction to Programming 2

 page 8

What’s next?
In the lectures we will build incrementally a working implementation of the “World of
GCU” adventure game. As we do so you will learn about some new programming
techniques and tools as they are needed. You will also learn how the associations
between classes in the game are implemented in Java.

For reference, at the start of each chapter of the lecture notes there will be a summary of
the programming techniques and class associations which are introduced in that
chapter, like this:

Programming techniques in this chapter:
....

Class associations in this chapter:
....

We will start by creating the Game and Player classes and testing the interaction
between instances of these classes.

