
 M1G413283: Introduction to Programming 2

 page 1

2. Creating classes: Game and Player

Programming techniques in this chapter:
Arrays, static variables and methods, constants, do‐while loop, main method

Class associations in this chapter:
“has‐a” relationships – one‐to‐one and one‐to‐many

Interaction between game and players .. 1
The Player class in Java .. 2
Implementing the interaction .. 3
Arrays ... 6
Static, final and constants ... 9
Loops: do-while .. 12
The main method .. 13
The Game class in Java ... 14
What’s next? .. 17

Interaction between game and players
In this chapter we will start to create Java code to implement the Game and Player
classes. It is important that we write the code so that game and player objects can
interact the way we want them to. As we do so, we will need some new programming
techniques to help us.

We said in the previous chapter that there will be only one game object, and that there
may be several players. The players will be part of the game. In fact, the game will
create its player objects as part of the set up. The game will then need to communicate
with the players during the game play – it will send a message to each one to tell the
player to take a turn.

Since the players are part of the game, we say there is a “has-a” relationship between
Game and Player. We can also describe this as a “whole-part” relationship.

We can now add some more detail to the model for these classes. The figure shows the
class diagram for these classes with some additional features based on the description
above.

 M1G413283: Introduction to Programming 2

 page 2

The Player class in Java

The code for the player class is shown below. Note that there is one field, name, which is
accessed publicly through getter and setter methods.

/**
 * Class Player
 *
 * Represents a player in the game
 *
 * @version 1.0
 */
public class Player {

 // the player's name
 private String name;

 /**
 * Constructor for objects of class Player
 */
 public Player(String name) {
 this.name = name;
 }

 /**
 * the player takes a turn in the game
 */
 public void takeTurn()
 {
 System.out.println("Player " + name + " taking turn...");
 }

game can setup and play

one (1) game, many (*) players

player can take turn

arrow direction means
game can send message
to player

 M1G413283: Introduction to Programming 2

 page 3

 /**
 * returns the name of this player
 */
 public String getName() {
 return name;
 }

 /**
 * set a new name for this player
 */
 public void setName(String name) {
 this.name = name;
 }
}

Testing the Player class

You can try creating this class for yourself. Create a new BlueJ project called adventure.
Add a new class called Player. Open the Player class for editing and replace the
existing code with the code above, and compile the class.

Create a new Player object in the BlueJ object bench. Choose any name you want.
Test the class as follows:

1. Select Inspect from the object’s right-click menu and check that the name field
has the value you chose

2. Run the getName method and check that it returns the value of the name field
3. Run the setName method and enter a new value for the name field, then Inspect

the object again to check that the value has been changed
4. Run the takeTurn method and observe the result

The takeTurn method does not do anything useful yet. All it does is print out a message
which shows that the method has been called. We will complete this method later.

Implementing the interaction

If you look through the code for the Player class, there is no mention of the Game
class. That is because a Player object does not need to communicate with the Game –
it simply takes a turn when it is told.

However, the Game does need to communicate with its players, to tell them to take their
turns. The Game class will therefore need a reference to Player to allow it to send a
message.

 M1G413283: Introduction to Programming 2

 page 4

Using a code pattern

We now have a problem - how do we allow Game to communicate with Player?

 It is very common for classes to be related with a “has-a” relationship like this. Common
problems often have common solutions which are based on the experience of people
who have solved the problems successfully in the past.

In programming, these solutions are known as patterns. The pattern we will use here
can be described like this:

CODE PATTERN: “HAS‐A”

Problem: how do you implement a “has‐a” relationship, where a “whole” object needs to
send messages to its “part” objects?

Solution: the class which needs to send the message has a field whose type is the name of
the other class.

So the Game class could have a field declared like this:

public class Game {

 // the player
 private Player player;
 ...

The field, or instance variable, player is a reference to an object of type Player. We
can represent this in an object diagram:

game1: Game

player

player: Player

name Player 1

KEY POINT

Sending a message to an object is done by calling a method of that object.
The Game tells a Player to take its turn by calling the takeTurn method of
the Player object.

 M1G413283: Introduction to Programming 2

 page 5

The setup code in Game would then be like this.

 private void setUp()
 {
 player = new Player("Player 1");
 }

Within the play method of Game, a message would then be sent by calling the takeTurn
method of the player field. Note the method call syntax, which includes the brackets
(empty as there are no parameters for this method).

 public void play()
 {
 ...
 player.takeTurn();
 ...
 }

The object which is referred to will then respond by running its takeTurn method.

Adding more players

The Game class now has a reference to one Player. However, we actually need to be
able to have more than one player. How do we deal with this?

One way would be to have more than one field for players, for example:

public class Game {

 // the player
 private Player player1;
 private Player player2;
 private Player player3;
 ...

 private void setUp()
 {
 player1 = new Player("Player 1");
 player2 = new Player("Player 2");
 player3 = new Player("Player 3");
 }

 M1G413283: Introduction to Programming 2

 page 6

The object diagram would look like this:

Note that the class diagram, shown again here for comparison, illustrates the types of
object which can be created. The object diagram shows actual objects which are in
existence at a point in time while the program is running.

The play method would also need to be modified:

 public void play()
 {
 ...
 player1.takeTurn();
 player2.takeTurn();
 player3.takeTurn();
 ...
 }

We can now have three players in the game. What if we need to add more? We would
have to add more fields, and change the setup code and the play code. There has to be
a better way. There is. We can use an array.

Arrays
In Java, as in most programming languages, an array is a structure that holds multiple
values of the same type. A Java array is also an object.

An array can contain primitive data type values. As it is an object, an array must be
declared and instantiated. The size of the array is specified when it is instantiated. For
example

int[] anArray;
anArray = new int[10];

game1: Game

player1

player1: Player

name Player 1

player2: Player

name Player 2

player3: Player

name Player 3

player2

player3

+setUp()
+play()

Game

+takeTurn()

Player
-name

-players1

*

 M1G413283: Introduction to Programming 2

 page 7

An array can also be created using a shortcut. For example:

int[] anArray = {1,2,3,4,5,6,7,8,9,10}

An array element can be accessed using an index value. For example:

int i = anArray[5]

Note that array indexes start from 0. The value of anArray[0] is 1, while anArray[5] is
actually the 6th element, with value 6 in this example.

The size of an array can be found using the length attribute. For example:

int len = anArray.length

Arrays of objects

Arrays can also hold objects of any type. Actually, the array doesn’t hold the objects
themselves – it holds references to objects. It is important to realise that when creating
an array of objects, the array itself must be declared and instantiated, and that each
individual element in the array must also be instantiated. This code creates an array of
Integer objects.

Integer[] anArray = new Integer[5]; // create the array (does not create
 // the objects in the array)

for (int i=0;i<anArray.length;i++){
 anArray[i] = new Integer(i); // create the objects in the array
 System.out.println(anArray[i].toString());
}

Note that you must create the array first, and then create the objects in the array. If you
miss out the second of these steps, you will probably get errors when you run the code
as the array will simply contain null references – the elements in the array do not have
any objects to point to as no objects have been created.

for
dat
a

NOTE

Java has a set of primitive data types, such as int. These have object
equivalents, such as Integer. An Integer object holds an int value but
provides additional functionality, for example for converting the value to
other data types.

 M1G413283: Introduction to Programming 2

 page 8

Implementing the Game class with an array

Using an array is a common solution when a “has-a” relationship is also a one-to-many
relationship. The pattern we are using now is slightly different to before:

CODE PATTERN: “HAS‐A(ARRAY)”

Problem: how do you implement a “has‐a” relationship, where a “whole” object needs to
send messages to its “part” objects?

Solution: the class which needs to send the message has a field which is an array of
objects whose type is the name of the other class.

public class Game {

 // the players in the game
 private Player[] players;
 // the number of players in the game
 private static final int NUM_PLAYERS = 4;

 ...

 private void setUp()
 {
 players = new Player[NUM_PLAYERS];
 for(int i=0; i<NUM_PLAYERS; i++)
 {
 players[i] = new Player(String.format("Player %d", i+1)
 }
 }

 public void play()
 {
 ...
 for(int i=0;i<NUM_PLAYERS;i++)
 {
 players[i].takeTurn();
 }
 ...
 }

 M1G413283: Introduction to Programming 2

 page 9

The object diagram now looks like this:

Note that there are four players here. What would we have to do to add, say, two more
players to the game? We would simply have to change the value of NUM_PLAYERS to 6.
We would not have to add more fields or change the play method at all.

Static, final and constants

Look at this line of code from the Game class which defines the value of NUM_PLAYERS.
NUM_PLAYERS is a constant, and this is how constants are typically defined:

 // the number of players in the game
 private static final int NUM_PLAYERS = 4;

There are two key words here which may be unfamiliar to you – static and final. What
do these mean, and why are they used here?

Class and instance members

When you declare a field in a class, like this example,

public class MyClass {
 public int instanceVar;

game1: Game

players

players[0]: Player

name Player 1

players[1]: Player

name Player 2

players[2]: Player

name Player 3

players[3]: Player

name Player 3

players: Player[]

 [0]

 [1

 [2]

 [3]

 M1G413283: Introduction to Programming 2

 page 10

you declare an instance variable. Every time you create an instance of a class, the
runtime system creates one copy of each the class's instance variables for the instance.
To use the value of the variable you need to have an instance of the class, i.e. an object.

MyClass anObject = new MyClass();
int i = anObject.instanceVar;

If a variable is declared with the static keyword, it is a class variable. There is one copy
of each class variable shared between all instances of the class.

 public static int classVar;

To use the value of the class variable, you do not need an instance – you simply use the
class name:

int i = MyClass.classVar;

Methods are similar. Your classes can have instance methods and class methods.
Instance methods operate on the current object's instance variables but also have
access to the class variables.

 public void instanceMethod()
 {
 instanceVar = instanceVar * 2; // do some action using instance var
 }

Class methods, on the other hand, cannot access the instance variables declared within
the class (unless they create a new object and access them through the object). Class
methods can access class variables.

 public static void classMethod()
 {
 classVar = classVar * 2; // do some action using class var
 }

To use a class method, you do not need an instance – you simply use the class name:

MyClass.classMethod();

Class methods provide a way of providing specific functionality without the need to
create an object.

Note that you can, although there is usually no point in doing so, access class variables
and methods through an instance:

 M1G413283: Introduction to Programming 2

 page 11

Constants

A constant is a value which will never change while the program is running. To create
a named constant in Java you use the final type modifier. A field declared final cannot
be changed in the program.

public class CircleStuff {
 public final float PI = 3.1416;
 ...
}

You can group your constants in their own class, like this:

public class Suit {
 public static final int CLUBS = 0;
 public static final int DIAMONDS = 1;
 public static final int HEARTS = 2;
 public static final int SPADES = 3;
}

You access these constants with the dot notation.

float pi = CircleStuff.PI
int suit = Suit.HEARTS

It is customary to make constant names all capitals.

The static modifier makes these constants class constants. They belong to their
classes, not to the objects derived from these classes. This means that there is only one
copy of the constant in memory. Without the static modifier, each object derived from the
class would have its own copy of the constant.

NOTE

The Math library class contains some useful mathematical constants,
including PI, so if you need to use a value for π you can simply use Math.PI

The Math class also has many useful class (static) methods for mathematical
expressions, for example the sin method which calculates the sine of an
angle. To call this method you use the class name, like this:

double result = Math.sin(x)

 M1G413283: Introduction to Programming 2

 page 12

Static and final – a summary

Don’t confuse the effect of the key words static and final!

• static

o Class variable (or method)
o Shared by all instances of a class

• final
o Constant value
o Can’t be changed after it is assigned

We often use the combination static final to define a class constant.

Loops: do-while

Game play usually involves a game loop, which repeats until a signal is given to end the
game. In our Game class, the game loop will be part of the play method. We can’t do
very much in the game yet, so we will implement a minimal game loop which simply tells
each player to take a turn and then exits.

 public void play()
 {
 printWelcome();

 // Enter the main command loop.
 // Here we will repeatedly read commands and execute them until the
 // game is over.
 boolean finished = true; // put this in temporarily so game finishes
 // after one turn
 do
 {
 for(int i=0;i<NUM_PLAYERS;i++)
 {
 System.out.println("Player: " + players[i].getName());
 players[i].takeTurn();
 }
 } while (! finished);

 System.out.println("Thank you for playing. Good bye.");
 }

The boolean variable finished is a flag – setting the value of the flag to true will cause
the game to finish. In the final, playable version of the game, the flag will be set when a
player enters a command to quit. However, we are not ready to handle commands yet,
so we will set this to true immediately, so that the game loop will terminate after one
complete turn.

You have seen while loops before. Note that the loop in this method is a variation on
this, a do-while loop.

 M1G413283: Introduction to Programming 2

 page 13

do {
 statement(s)
} while (expression);

The difference between do-while and while is that do-while evaluates its expression at
the bottom of the loop instead of the top. Therefore, the statements within the do block
are always executed at least once. In this case, although the flag was set before the
loop, the loop still runs once. What do you think would happen if we used a while loop
here instead?

The main method
A Java program works by creating objects and making them interact. However, in order
to get started there must be an entry point to the program, which starts the program
running. This is called the main method.

The main method is a static method which must have a signature like this (the signature
of a method consists of its name, its return type and its list of parameters):

public static void main(String [] args)
{
 ...
}

The code in the main method usually creates one or more objects and calls methods of
the objects to get things going. In the game program, the main method will create a Game
object, and call its play method. That Game object will create Player objects and interact
with them to perform the game play.

public static void main(String [] args)
{
 Game game = new Game();
 game.play();
}

Where does the main method go?

A program should only have one main method, and the code for main can be placed in
any class, although it does not actually represent any behaviour of a particular object.
We will put it in the Game class for convenience. Alternatively, we could have created a
separate class, called something like GameRunner, just to hold the main method
program.

 M1G413283: Introduction to Programming 2

 page 14

N

As a general rule, the main method should not have much code in it. It is really there to
create the objects required to get the program going. In this example, it simply creates a
Game object and passes responsibility for playing the game to that object. In a program
with a graphical user interface, the main method would simply create and display the
frame which represents the main window of the application.

Some textbooks show code examples which consist of a class which only has a main
method, and all the code is in the main method. This is not good practice for real
programs!

The Game class in Java

The complete code for the initial version of the Game class is shown below. There are a
few things to note here:

• The setup method is called in the Game constructor, which makes sense as
instantiating a new game object should include setting up the game world. The
setup method is declared private as it will not be called by any other object.

• There is another private method, printWelcome, which is used by the play
method.

• The only public method, then, is play. That means that the only thing that can
be done with a Game object is to tell it to play.

/**
 * Class Game
 *
 * Sets up and controls the game

 * @version 1.0
 */

public class Game
{
 // the players in the game
 private Player[] players;

NOTE

Standalone Java applications require a main method as an entry point.
There are other types of Java programs, such as servlets (which run on
web servers) and applets (which run inside web browsers) which have
different entry points. Some Java projects are class libraries, designed
to be used in other applications, which have no entry point at all.

 M1G413283: Introduction to Programming 2

 page 15

 // the maximum number of players allowed
 private static final int NUM_PLAYERS = 4;

 /**
 * Create the game and initialise it
 */
 public Game()
 {
 setUp();
 }

 /**
 * Initialize the game world
 */
 private void setUp()
 {
 players = new Player[NUM_PLAYERS];
 for(int i=0;i<NUM_PLAYERS;i++)
 {
 players[i] = new Player("Player " + Integer.toString(i+1));
 }
 }

 /**
 * Main play routine. Loops until end of play.
 */
 public void play()
 {
 printWelcome();

 // Enter the main command loop. Here we repeatedly read commands and
 // execute them until the game is over.
 boolean finished = true; // put this in temporarily so game finishes
 // after one turn
 do
 {
 for(int i=0;i<NUM_PLAYERS;i++)
 {
 System.out.println("Player: " + players[i].getName());
 players[i].takeTurn();
 }
 } while (!finished);
 System.out.println("Thank you for playing. Good bye.");
 }

 /**
 * Print out the opening message
 */
 private void printWelcome()
 {
 String welcome = "\n";
 welcome += "Welcome to the World of GCU!" + "\n";
 welcome += "World of GCU is a new, incredibly boring
 adventure game." + "\n";

 M1G413283: Introduction to Programming 2

 page 16

 welcome += "\n";
 System.out.print(welcome);
 }
 /**
 * Create and play a game.
 */
 public static void main(String [] args) {
 Game game = new Game();
 game.play();
 }
}

Testing the Game class

You can try creating this class for yourself. Open your adventure project. Add a new
class called Game. Open the Game class for editing and replace the existing code with the
code above, and compile the class. You should now have Player and Game classes
both of which should be compiled.

Create a new Game object in the BlueJ object bench. Choose any name you want. Test
the class as follows:

1. Select Inspect from the object’s right-click menu and check that there is an array
of Players.

2. Click the Inspect button beside players and check that there are four Player
objects in the array. You can inspect each Player object in turn.

 M1G413283: Introduction to Programming 2

 page 17

3. Run the play method. Check that the welcome message is printed, and that the
takeTurn method is called for each Player object.

These tests show that a Game object does what we want it to. Finally, we can actually run
the program using the main method.

4. Right-click the Game class in the BlueJ class diagram, and select main.
Remember that main is a static method, so you call it using the class, not using
an object. Click OK in the Method Call box. Remember that the main method
simply creates a Game object and calls its play method. Check that you see the
output from the play method.

What’s next?

We now can create game and player objects and make them interact, and we have a
basic program which uses these objects. In the next chapter we will add some rooms to
the game and put some items in the rooms for the players to use.

