
 M1G413283: Introduction to Programming 2

 page 1

5. Completing the program

Programming techniques in this chapter:
Inheritance, polymorphism, casting, switch statement, command prompt tools

Class associations in this chapter:
“is‐a” relationships, “uses‐a” relationships, “creates‐a” relationships

Different kinds of items .. 1
Inheritance ... 2
Polymorphism ... 4
Casting ... 5
Introducing interactivity - handling commands .. 6
The Command class ... 6
The Parser class ... 9
Processing a Command ... 11
The switch statement ... 12
The modified game loop .. 14
Running the game ... 14
Compiling and running Java programs without an IDE ... 16
What’s next? .. 19

Different kinds of items

At the moment there is only one kind of item in the game. It would be nice to have the
possibility of different kinds of items which would behave differently when used. All kinds
items might actually have some common behaviour, but some kinds may do some things
differently, or have their own special extra behaviour.

We will add a new kind of item to the game. This will be called a BonusItem, and its
extra feature is that it can reveal a secret bonus keyword.

This situation is an example of a new code pattern, the “is-a” pattern.

CODE PATTERN: “IS‐A”

Problem: how do you implement a relationship where one class is a specialized version of
another more general class and shares some of its behaviour

Solution: the specialised class extends the more general class and adds new methods or
overrides methods of the general class

This pattern is usually called inheritance.

 M1G413283: Introduction to Programming 2

 page 2

Inheritance
Defining a new class to create a new type can involve a lot of effort. Sometimes a class
already exists that is close to what you need. You can extend that class to produce a
new class that is exactly what you need. In many cases, this will require much less
effort than that required to start from scratch and define a new class.

You can extend your own classes, or you can extend classes which have been written
by others and which you have access to (for example the Java API classes).

When you extend a class, the new class is called the subclass and the class that was
extended is called the superclass.

To extend another class you use the extends keyword in your new class declaration:

public class MyNewClass extends MyOtherClass {

What is inherited?

The subclass inherits all of the variables and all of the methods defined the superclass,
as if you had completely defined the new class from scratch, and had reproduced all of
the code already defined in the existing superclass.

Therefore, inheritance often makes it possible to define a new class with a minimum
requirement to write new code by reusing the code that was previously written in
superclasses.

The behaviour of the methods defined in a superclass and inherited into your new class
may or may not be appropriate for an object instantiated from your new class. If those
methods are appropriate, you can simply leave them alone.

Overriding

If the behaviour of one or more methods defined in a superclass and inherited into your
new class is not appropriate for an object of your new class, you can change that
behaviour by overriding the method in your new class.

To override a method in your new class, define a method in your new class with the
same name and signature (i.e. parameter list, and return type) as the original. Then
provide a body for the new method. Write code in that body to cause the behaviour of
the overridden method to be appropriate for an object of your new class.

Any method that is not declared final can be overridden in a subclass.

Don't confuse method overriding with method overloading. Overloading means having
methods (or constructors) within the same class with the same name, but different
argument lists.

 M1G413283: Introduction to Programming 2

 page 3

Additional Methods

If your new class needs to implement additional behaviour, you can simply add new
methods to the subclass.

Inheriting from Object

Every class in Java extends some other class. If you don't explicitly specify the class
that your new class extends, it will automatically extend the class named Object. All
classes in Java are in a class hierarchy where the class named Object is the root of the
hierarchy.

Some classes extend Object directly, while other classes are subclasses of Object
further down the hierarchy.

The BonusItem class

The BonusItem class extends the Item class, and inherits its use method. It adds a new
method, bonus, which prints out the value of a new field, codeWord. The class diagram
for Item and BonusItem looks like this:

The object diagram for a situation where a BonusItem has been created looks like this:

bonus1:BonusItem

codeWord

description

 M1G413283: Introduction to Programming 2

 page 4

Note that there is only one object here. In the other relationships we have seen, the
classes are used to create two or more collaborating objects. Here, a single object is
created by combining template information from two classes.

The code for the BonusItem class is as follows:

public class BonusItem extends Item
{
 private String codeWord;

 public BonusItem(String description, String codeWord)
 {
 super(description);
 this.codeWord = codeWord;
 }

 public void bonus()
 {
 System.out.format("This item's secret code word is %s\n", codeWord);
 }
}

Polymorphism
The word “polymorphism” literally means “one name, many forms”. Polymorphism is an
important idea in object-oriented programming. One form of polymorphism makes use of
inheritance.

Here’s how it works. We can declare a variable of type Item, like this:

Item myItem;

This declaration says that there will be a variable called myItem which can refer to an
object of type Item.

The object doesn’t exist yet. We need to create, or instantiate it, using the new keyword.

Item myItem;
myItem = new Item(“my item”);

Polymorphism allows us to do a trick here. A variable of type Item can refer to either:

• an Item object, OR
• an object whose type is a subclass of Item, for example BonusItem

calls the constructor of Item to set
description

new field – description field is
inherited from Item

new method – use method is inherited
from Item

 M1G413283: Introduction to Programming 2

 page 5

This means we can do this:

Item myItem;
myItem = new BonusItem(“my bonus item”);

It is possible to have a situation where a variable is declared with a specific type, known
as the reference type, but the actual type of the object it refers to is not defined until the
program is actually running. The actual object type is the run-time type. This is runtime
polymorphism, sometimes also referred to as late-binding.

Note that polymorphism doesn’t work the other way:

BonusItem myItem;
myItem = new Item(“my bonus item”);

Polymorphism in collections

Polymorphism is particularly useful when dealing with collections of objects. Think
about the Room class. It has an ArrayList which can hold Item objects. Through
polymorphism, a reference to an Item can also refer to any subclass of Item.

The result is that the ArrayList, items, in the Room class can hold Item objects, or
BonusItem objects, or any combination of these. When we add an item to the room, we
can add either one of Item or BonusItem.

We can use this when we set up the game. Any combination of Item and BonusItem
objects can be added to any room. For example:

Room theatre = new Room("in a lecture theatre");
theatre.addItem(new Item("projector"));
theatre.addItem(new BonusItem("screen","BLUEJ"))

Room lab = new Room("in a computing lab");
lab.addItem(new BonusItem("computer","JAVA"));
lab.addItem(new Item("printer"));

Casting
We have to be careful when using polymorphism. Look at this code:

Item myItem = new BonusItem(“my bonus item”);
myItem.bonus();

At first sight, this looks OK. However, the second line will cause a compiler error.

reference type

run-time type

 M1G413283: Introduction to Programming 2

 page 6

Although the object myItem has run-time type BonusItem, the reference type is still
Item. You cannot call a method which is not defined in the object’s reference type. The
method bonus is only defined in the subclass BonusItem.

The solution is to convert, or cast, the object to its run-time type, like this:

BonusItem myBonus = (BonusItem) myItem;
myBonus.bonus();

This is called downcasting. We have cast the Item reference myItem to type BonusItem
and assigned it to a reference of type BonusItem. We can call the bonus method using
this BonusItem reference.

Introducing interactivity - handling commands
We are now ready to move on and turn our game into a complete(ish) program.

Up to this point the adventure game is lacking in interactivity. There is no way for
someone who is playing the game to control what happens. In a text-based adventure
game, players interact with the game by typing commands. There is usually a limited
set of commands which the game understands and which may cause some change in
the game state. The user can type anything at all, but only valid commands will be
understood.

An example of a command might be:

go west

The result of this command would be that the Player object would go to another room,
using the exit from the current room marked west. The first command word (go)
indicates the type of action to take, while the second command word (west) gives
additional information about how to perform the action.

Some commands may have only one command word, for example:

help

This command would simply list the valid (first) command words in the game.

The Command class

A command is fairly simple –just one, or possibly two, strings. It will be useful, though, to
have a class which represents a command. A Player object will then process a
Command object within its takeTurn method, and perform the requested action. It will be
easier to write the new code in Player to do this if it can get a command as a single
object rather than two separate strings.

 M1G413283: Introduction to Programming 2

 page 7

We can also put some additional methods into Command to make it more convenient to
use. A method hasSecondWord will provide an easy way to check whether a one-word or
two-word command has been entered. Another method isUnknown will provide an easy
way to check whether an command with an invalid first word has been entered.

Here is the code for the Command class:

public class Command
{
 private String commandWord;
 private String secondWord;

 public Command(String commandWord, String secondWord)
 {
 this.commandWord = commandWord;
 this.secondWord = secondWord;
 }

 public String getCommandWord()
 {
 return commandWord;
 }

 public String getSecondWord()
 {
 return secondWord;
 }

 public boolean isUnknown()
 {
 return (commandWord.equals("?"));
 }

 public boolean hasSecondWord()
 {
 return (secondWord != null);
 }
}

Relationship between Player and Command

There needs to be a relationship between Player and Command because a Player
object will need to be able to send messages to a Command object to, for example, get
the command words.

The Player object does not need to own the Command, it simply uses it in order to get
information about what action to perform. This is another example of the “uses-a”
pattern.

 M1G413283: Introduction to Programming 2

 page 8

CODE PATTERN: “USES‐A”

Problem: how do you implement a “uses‐a” relationship, where an object needs to send a
message to another object

Solution: the class which needs to send the message has a method parameter or local
variable whose type is the name of the other class.

There is an interesting difference between the Player-Item relationship which you saw
previously and the Player-Command relationship. An Item exists as part of the game
world (and belongs to a Room). However, a Command object only needs to exist while
it is being processed. Command objects are temporary objects.

The code pattern is similar, though. The revised version of the takeTurn method of
Player now has a local variable of type Command.

 public boolean takeTurn()
 {
 Command command = ??
 return processCommand(command);
 }

processCommand will be a new method in Player which will contain the code which
performs the action indicated by the command. Note that we haven’t yet decided how
the Command will be created, so this method is still not complete.

The takeTurn method returns a boolean value, which will be used in the game loop to
decide whether to exit the loop after this turn.

Turning user input into a Command
There is something missing here. We need something which will take the players’
keyboard input and turn it into commands which can be processed. The player could
potentially type anything at all – one word, two words or more; valid or invalid
commands; complete or partial commands.

This “something” needs to:

• Read in a line of text typed at the command prompt
• Split the input text into individual words
• Check that the first word is a valid command word
• Construct a Command object using the first word and the second word (if there is

one), ignoring any additional words

 M1G413283: Introduction to Programming 2

 page 9

The Parser class

In an object-oriented program, “something” is usually an object. We will need objects
which can do this job, and so we will need a class to allow these objects to be created.
The class will be called Parser. A Parser object will not represent information in the
game. Instead, Parser is class which performs a specific role in the program.

Parser is related to both Player and Command. Here is the class diagram for these
classes:

+takeTurn()
-name

Player

+hasSecondWord()
+isUnknown()

-commandWord
-secondWord

Command

+getCommand()
-commands

Parser

The relationship between Player and Parser is very similar to that between Player and
Command – a Player object uses a Parser object. The Parser only needs to exist while
it is doing its job.

Relationship between Parser and Command
A key part of the job of a Parser object is to create a new Command. The relationship
between Parser and Command is an example of a new pattern:

CODE PATTERN: “CREATES‐A”

Problem: how do you implement a “creates” relationship, where an object creates an
instance of another class?

Solution: the class which creates the instance has a method which returns a value whose
type is the name of the other class. The instance is newly constructed within this method.

Note that these three classes work together as follows:

• A Player uses a Parser to read input and create a Command
• The Player then uses that Command to decide what action to perform

Player can use a Command

Player can use a Parser

Parser can create a
Command

 M1G413283: Introduction to Programming 2

 page 10

The following listing shows some key features of the code for the Parser class. You can
download the full code from the course website if you want to look at the compete class.

public class Parser
{
 private String[] commands; // holds all valid command words
 private Scanner reader; // source of command input

 public Parser(String[] commands)
 {
 this.commands = commands;
 reader = new Scanner(System.in);
 }

 public Command getCommand()
 {
 String inputLine; // will hold the full input line
 String word1 = null;
 String word2 = null;

 System.out.print("> "); // print prompt
 inputLine = reader.nextLine();

 // Find up to two words on the line
 ...

 // replace any invalid command word with ?
 if(!isValidCommand(word1))
 {
 word1 = "?";
 }

 return new Command(word1, word2); // constructs and returns Command
 }

 private boolean isValidCommand(String commandWord)
 {
 // checks whether commandWord is in array of valid commands
 ...
 }

 public String showCommands()
 {
 // returns a list of valid commands
 ...
 }
}

 M1G413283: Introduction to Programming 2

 page 11

We can now fill in the rest of the takeTurn method in Player:

 public boolean takeTurn()
 {
 Parser parser = new Parser(commands);
 Command command = parser.getCommand();
 return processCommand(command);
 }

The variable commands is an array of type String which contains all the valid command
words. The command list is defined as a field in Player, which is then passed into the
constructor of Parser.

 // valid command words
 private String[] commands = {"go","quit","help"};

Processing a Command
The Player class has a method processCommand which uses the command word of a
Command to decide what action to take. It can do one of the following:

• print a message if the command word is “?” (the value set if the user input is not
recognised)

• print a help message if the command word is “help”
• go to another room if the command word is “go”
• return true if the command word is “quit” – this will act as a flag to stop the game

loop

In the case of a “go” command, the Command object will be passed to another method,
goRoom, which will use the second word of the command to decide which exit to go
through.

The code for processCommand is listed here.

NOTE

The Parser and Command classes have no knowledge in advance of the
actual list of valid commands, and will work with any list supplied by
Player (or indeed by any other class which may use them). If we decide to
add more commands later, then the only class which needs to be changed
is the Player class.

 M1G413283: Introduction to Programming 2

 page 12

 private boolean processCommand(Command command)
 {
 boolean quit = false;

 // get command word and use to select option
 String commandWord = command.getCommandWord();

 if(commandWord.equals("?")) {
 System.out.println("I don't know what you mean...");
 }
 else if (commandWord.equals("help")) {
 printHelp();
 }
 else if (commandWord.equals("go")) {
 goRoom(command);
 }
 else if (commandWord.equals("quit")) {
 System.out.println("the game will
 finish at the end of this round");
 quit = true;
 }
 return quit;
 }

The switch statement
The sequence of if and else statements in the above code is a rather clumsy way of
selecting from a list of choices based on the value of a variable. The switch statement
is arguably more elegant and readable. The selection code above can be replaced with:

 // get command word and use to select option
 String commandWord = command.getCommandWord();
 char commandChar = commandWord.charAt(0); // get first character

 switch(commandChar)
 {
 case '?':
 System.out.println("I don't know what you mean...");
 break;
 case 'h':
 printHelp();
 break;
 case 'g':
 goRoom(command);
 break;
 case 'q':
 System.out.println("the game will finish
 at the end of this round");
 quit = true;
 break;
 }

 M1G413283: Introduction to Programming 2

 page 13

Note that we are using the first character of the command word to select the option. The
options in a switch statement can be integers or characters, but can’t be strings.

The goRoom method

The goRoom method is called if the command word is “go”. Here is part of the code for
this method, giving an outline of how this works.

public void goRoom(Command command)
{
 if(!command.hasSecondWord()) {
 System.out.println("Go where?");
 }
 else
 {
 String direction = command.getSecondWord();

 Room nextRoom = this.getCurrentRoom().getExit(direction);

 if (nextRoom == null) {
 System.out.println("There is no door!");
 }
 else
 {
 this.setCurrentRoom(nextRoom);
 System.out.println(this.getCurrentRoom().getDescription());
 // use the items in the room
 ...
 }
 }
}

The first part of the code checks whether the command has a second word – the player
can’t move unless a direction is specified.

If the command has a second word, then we ask the current room for an exit with a label
matching the second word, using the getExit method. If there is an exit with this label,
we change the current room of the player to the room which that exit refers to.

The complete version of this method also loops through the items in the new room and
calls the use method of each one. You can download the full code from the course
website if you want to look at the compete method.

NOTE

Microsoft’s C# language, which is similar in many ways to Java, has a very
similar switch statement. In C#, however, the options can be strings.

 M1G413283: Introduction to Programming 2

 page 14

The modified game loop
We are nearly finished the game. The last thing we will have to do is to modify the game
loop, which is in the play method of Game. The last time we looked at this it simply gave
each player one turn, then stopped. Now, we can make it continue looping until one of
the players gives a quit command.

Note that the processCommand method returns true if the command is “quit”. The
takeTurn method in turn returns true to the code which calls it, which is the game loop.

The game loop can then use the value returned by takeTurn to set the value of
finished, the boolean variable it uses as a flag to stop the loop executing:

public void play()
{
 printWelcome();

 // Enter the main command loop.
 // Here we repeatedly read commands and execute them until game is over
 boolean finished = false;
 do
 {
 for(int i=0;i<NUM_PLAYERS;i++)
 {
 System.out.println("Player: " + players[i].getName());
 boolean quitRequested = players[i].takeTurn();
 if(quitRequested)
 {
 finished = true;
 }
 }
 } while (!finished);

 System.out.println("Thank you for playing. Good bye.");
}

Running the game

We can run the game simply by right-clicking on the Game class in the BlueJ class
diagram and selecting the main method. The output appears in the BlueJ terminal
window.

 M1G413283: Introduction to Programming 2

 page 15

Here is an example of game play

However, you do not expect users of your application to run it in BlueJ. Applications are
usually run by clicking on an icon (for applications with a graphical user interface) or
typing a command at a command prompt. We can package the game project so that
it can be run at a system command prompt.

We select the Project > Create Jar File... menu option in BlueJ. This will package the
contents of the project into a single, executable file, called a Jar. This is similar to a
Windows .exe file.

The main method, which is the entry point which the operating system needs to launch
the application, is in the Game class, so you need to specify that this is the main class in
the Create Jar File dialog.

commands entered at prompt (>)

 M1G413283: Introduction to Programming 2

 page 16

We can then name the jar file and save it in a suitable location, for example
C:\adventure.jar.

The application can then be run by entering the command:

 java –jar c:\adventure.jar

Compiling and running Java programs without an IDE
Throughout this module we have used the BlueJ IDE (Integrated Development
Environment) to help manage the process of editing, compiling, testing, debugging and
deploying Java applications. Most programmers use an IDE because it helps them to do
their job and to be more productive. BlueJ is designed to help you to learn about object-
oriented programming, while more advanced IDEs like NetBeans and Eclipse (for Java)
and Visual Studio (for C#) will provide support as you develop and apply your skills.

It is, however, useful to know how to work “without a tightrope”. The Java JDK provides
a range of command prompt tools which, together with a simple text editor, can be used
to create and run Java programs without an IDE. We have just looked at one example,
the java command, which can be used to execute a JAR file created with BlueJ.

Here, we will look at how the adventure game application can be compiled and run using
command prompt tools. There are also many other tools in the JDK, including the
javadoc tool for creating documentation.

Compiling
The Java compiler is called javac. To compile a Java source file, for example
Game.java, you use the command:

 M1G413283: Introduction to Programming 2

 page 17

javac Game.java
In the figure below, the Java source files for the game are in a folder called
C:\adventure, and this is the current working directory. The command:

javac *.java

uses the wildcard character * to select all Java source files in the folder and compile
them. A compiled .class file is created for each class in the Java source files.

Setting paths
Note that for this to work, the folder which contains the file javac.exe needs to be in the
current path. Javac.exe is usually in a folder called bin within the JDK installation folder.

In Windows, the PATH environment variable contains a list of folders which Windows will
search through when it is asked to execute a file which is not in the current folder. Other
operating systems which support Java have similar environment variables which need to
be set.

We can set the PATH in Windows from the command line, or from the Environment
Variables window, which is accessed by opening the System control panel, selecting
the Advanced tab and clicking the Environment Variables button.

In the figure below, the path has been modified by appending the bin folder in the Java
installation folder to the path.

existing path;C:\Program Files\Java\jdk1.6.0_07\bin

 M1G413283: Introduction to Programming 2

 page 18

Note that there is also an environment variable CLASSPATH, which Java uses to
search for compiled class files which may be needed when a program runs. We don’t
need to add anything in this example, as all the required classes are in the current
folder, or are API classes which are included in the CLASSPATH by default.

Running
We can run the program by using the java command, specifying the name of the class
which contains the main method. The command is:

java Game

 M1G413283: Introduction to Programming 2

 page 19

When the Game class executes, it also requires the class files for the other classes in
the game, for example Player.class and Room.class, which are in the current folder.

The java command is the same one we used earlier to execute a JAR file. The –jar
option is required to execute a JAR. Note that the java command can also be used to
create a JAR file. Deploying an application as a single JAR is more convenient than as a
collection of separate class files.

What’s next?
That’s as far as we are going to go with this adventure game. We could add more
features to make it a (much) more interesting game, but the basic structure of the game
is there.

So what else do we need to learn about programming? Now that you know the basics,
here’s a few examples of exciting things you may go on to learn during your course:

• How to write programs with graphical interfaces
• How to write programs with web page interfaces
• How to write graphics-based games
• How to write programs which work with databases
• How to write programs which communicate over networks
• How to use other languages, such as C# or C++
• How to use more advanced development tools, such as NetBeans or Visual

Studio

