Object Oriented Software
Development

3. Creating C# classes

8/31/2012

Ja«)&

e Create an OO program by writing classes

e Need to understand structure and syntax of
C# classes

e Programming language syntax is the set of
rules which specify what is valid within the
language

e C# syntax is similar to Java in many ways,
but there are some important differences

e We will look in detail at example C# classes

C# classes

Object Oriented Software Development 3. Creating C# classes
Geu,

(-

C# example class code -

¢ ClassesDemo project

e Employee.cs
e Program.cs

e Location.cs

e Department.cs
e TimeSheet.cs

Object Oriented Software Development 3. Creating C# classes
Geu,

Code blocks —

o Related code enclosed in brackets { }
e namespace
e class
e method
o if/for/while
e try/catch
e Each opening bracket
{

must have a matching closing bracket

Object Oriented Software Development 3. Creating C# classes
(Geu

8/31/2012

Code blocks —

e Blocks are often nested

e Indent code inside blocks for readable code

e Makes structure of code much more
understandable

e VS usually automatically indents, if there are
no syntax errors in code

e Can force VS to format code with Edit >
Format Document menu option

Object Oriented Software Development 3. Creating C# classes
(Geu

Namespaces -

e We are creating a class called Employee

e Someone else might also create a class
called Employee

e No problem...

e ...unless two classes with the same name
become part of the same application

e Could happen if you include classes from a
class library in your application

Object Oriented Software Development 3. Creating C# classes
(Geu

g .
Code re-use e

e |t is very common to use classes in more
than one program

e Encapsulation makes this straightforward in
object oriented programming

e Each class is a self-contained component
with a public interface

e Class libraries are groups of classes
designed to be used in other programs

e Most programs will use .NET Framework
library classes, and often other libraries

Object Oriented Software Development 3. Creating C# classes
(Geu

8/31/2012

Namespaces -

e Solution - namespaces

e Creating class within a namespace gives the
class a (more) unique name

namespace ClassesDemo
{
mar
represents an employee

mmar
public class Employee
{

e Name of class is ClassesDemo.Employee
e This is called the fully qualified name

Object Oriented Software D
Geu,

Namespaces -

e Can define each class in a separate file or
define multiple classes within a file

e Can define multiple classes within a
namespace block in a file

e Can specify the same namespace in
separate files

e Usually all the classes in a project belong to
the same namespace

Object Oriented Software Development 3. Creating C# classes
(Geu

Using other namespaces i

e Can use classes which are not part of your
project

e May need to add Reference within your
project

e Put using statement(s) at the top of your
code file allows you to use the class name

e Otherwise would need to use fully qualified
name

8/31/2012

Object Oriented Software Development 3. Creating C# classes
(Geu

Using other namespaces -

e Often need to include namespaces for .NET
framework class library classes

using Systen;

namespace C_assesDemo

{

e Allows you to use the System.Console class
e needed to print output in console applications

Console.WriteLine ("Email address for Susan is (0}", emp2.Email);

e Can have as many usings as you need

Object Oriented Software Development 3 Creating C# classes
(Geu

Instance variables (fields) .

o Define the attributes which each instance of
the class (i.e. objects) can have

e Each object can have its own values for the
instance variables

e Declaring an instance variable:
e Specify access (public/private) for each field
e Specify type

e By convention, name of variable is not
capitalised

Object Oriented Software Development 3. Creating C# classes
(Geu

Instance variable declarations -

Instance variables in Employee class

private string name;

private string uSername;

private Location currentLocation;
private string phoneNumber;

access modifier type name

N

<

Note that type can be the name of
_ another class in your application to set
up “has-a” relationship

Object Oriented Software Development 3. Creating C# classes

8/31/2012

[
¢

Constants -

e Constants

Value can’t be changed once set
Use const key word

private const string EMAIL SUFFIX = "@example.com';

Object Oriented Software Development 3. Creating C# classes

[
¢

Static variables -

e Static variables

Same value for all instances of a class

Use static key word

Also know as class variables

public static int maxBEntries; < in TimeSheet class

Can be accessed using name of class, without
creating an instance

TimeSheet.maxEntries = 100;

Not constant, can be changed, change applies to
all instances of class

Object Orient

R

)

Constructors -

e Constructor is called when an object is
created

e Used to initialise new object
e Constructor has same name as class
e Can specify parameters for constructor

e Can have multiple constructors with different
parameter lists (overloading)
o Allows objects to be initialised in different ways

Object Oriented Software Development 3. Creating C# classes
(Geu

8/31/2012

Constructors -

e Default constructor

o No parameters

e Implicit if no constructors defined
e Creating objects
e Use new keyword

e Constructor selected according to parameters
supplied
e Compiler error if no matching constructor found

Object Oriented Software Development 3. Creating C# classes
(Geu

=N
Constructors -

public Employee(string name, string username,
Location location, string phoneNumber)

{

this.name = name;
this.username = username;
this.currentLocation = location;

this.phoneNumber = phoneNumber;
}

Employee empl = new Employ
Employee emp2 = new Empl

", "michael", loc, "1234");
", "susan", loc, "4321");

nployee emp3 = new Employee():
&Dllc Enployee ()
{
this.name = "default";
this.username = "default";
this.currentLocation = null;
this.phoneNumber = "0000";
}
Object Orented st oment 3 Creating a classes
@l 18

Methods —

e A method defines a single action which an
object can perform

e Method can return a value
e Method may need information (parameters)

e Signature is method name + return type +
parameter types

e Can have methods in a class with same
name but different signatures - overloading

e Code to perform action defined in code block

Object Oriented Software Development 3. Creating C# classes
(Geu

8/31/2012

Cohesion of methods -

e Good object oriented design aims for high
cohesion
e Each method should perform a single task
e Name of method should describe what the task is
e A method should perform a task related to the

class itis in

e As aresult, methods often contain relatively
short segments of code

e Can be as short as a single statement, or can
contain a more complex algorithm

Object Oriented Software Development 3. Creating C# classes
(Geu

Algorithms -

e To write a method you need to devise an
algorithm to solve the problem

e Set of instructions for carrying out the
method’s task

e Construct from:
e Sequence — individual statements, in order
e Selection
e lteration

Object Oriented Software Development 3. Creating C# classes
(Geu

LR

Selection and iteration -

e Useful programming constructs which may be
needed within class methods
e Selection

e Choosing from two or more actions to take based
on the value of a variable

e [teration
e Repeating actions
e Loops

Object Oriented Software Development 3. Creating C# classes
Geu, 2

8/31/2012

Selection: if-else —
Console.Write ("Enter a character: ");
char ¢ = (char)Console.Read();
if (1. IsUpper (c))
{
onsole.WriteLine ("The character is uppercase."):
}
else if (Char.IsLower (c))
e.WriteLine("The character is lowercase.™);:
‘har.IsDigit(c))
.WriteLine ("The character is a number.");
{
le.WriteLine ("The character is not alphanumeric.™);:
+
@l . 2

&

) M

Selection: switch -

Console.WriteLine ("Coffee sizes: 1=Small 2=Medium 3=Large");
Console.Write("Please enter your selection: ");

string s = Console.ReadLine();

int n = int.Parse(s);

int cost = 07

switch (n)

case 1:
cost += 25;
break;
case 2:
cost += 40;
break;
case 3:
cost += 50;
break;
default:

Object Oriented Software Development 3. Creating C# classes
Geu, 2

&

Iteration I

o for

for (int i = 1; i <= 5; i++)
{
Console.WriteLine (i),

}
e while

int n = 1;

while (n < 6)

{
Console.WritelLine ("Current value of n is {0}", n);
et

}

e also have do-while, foreach-in

Object Oriented Software Development 3. Creating C# classes
Geu,

8/31/2012

N

Method example e

e RecordOvertime method of Employee class
returns no value — return type is void

e Code for method includes an if-else construct

public void RecordOvertime(TimeSheet timeSheet, int hours,
bool isWeekend)
{
send message to time sheet object to ask it to
// record information
if (isWeekend)
{
timeSheet.AddEntry (name, hours * 2);
}
else
{

timeSheet.AddEntry (name, hours);

Object Oriented Software Development 3. Creating C# classes
Geu,

Calling methods —

e Call method by specifying method name and
parameters

empl.Recordovertime(ts, 5, true);

e This sends a message to Employee object
emp1

e Note that code in RecordOvertime method of
Employee sends message to TimeSheet
object by calling its AddEntry method

Object Oriented Softws 3. Creating C# classes
Geu,

R

)

Calling methods -

e Set value of variable to return value if method
return type is not void

e Example — calling Employee’s TotalOvertime
method

public nt TotalOvertime(TimeSheet timeSheet)
{

int overTime = empl.TotalOvertime(ts);

Object Oriented Software Development 3. Creating C# classes
(Geu

8/31/2012

N

)

Static methods -

e Class methods — don’t need to create an
instance to use method

e Example — IncreaseMaxEntriesBy method in
TimeSheet class

public static void IncreaseMaxEntriesBy(int increment)
{

TimeSheet.maxEntries += increment;

4

TimeSheet.IncreaseMaxEntriesBy (50);

}

Object Oriented Software Development 3. Creating C# classes
(Geu

N

)

Static methods -

e Often used in utility classes which provide
methods which can be called without an
instance

e Example - System.Math framework library
class
e constants, e.g. Pl
e methods, e.g. Sin

double angle = Math.PI;
double result = Math.Sin(angle);

Object Oriented Softws pmen 3. Creating C# classes
(Geu 30

10

.

Main method .

e The Main method is the entry point of an
.exe program; it is where the program control
starts and ends

e Main is declared inside a class or struct

e Main must be static and it should not be
public

e Main can either have a void or int return type.

e The Main method can be declared with or
without a string[] parameter that contains
command-line arguments

bject Oriented Softwas
Geu,

8/31/2012

Properties

e Classes can have attributes, or instance
variables which are usually declared as private

e Sometimes need to provide a way for other
classes to read or change the values of
attributes

e Can write getter and setter methods
e C# provides a neater solution — properties

e Public properties encapsulate private
instance variables

Object Oriented Software Development
Geu,

.

. b ~d N
Properties e

e Property (usually) encapsulates an instance
variable

e Property is public

e By convention property names are capitalised
e e.g. name variable — Name property

e Control access by providing get, set blocks

e Read-only access by providing get block only

o Get/set blocks usually simply read/set
variable value, but can include other code

Object Oriented Software Development
Geu,

11

-

. v e

Employee class properties -
T

name Name: get only

username Username: get only

location no property, changed by Move method

phoneNumber PhoneNumber: get and set

none Email: get, depends on value of username

attribute

o Note — this version of class defines Email as
a property rather than a method

Object Oriented Software Development 3. Creating C# classes
(Geu 3

8/31/2012

S

Using properties -

e Properties are accessed using simple syntax

e Properties are not methods — no brackets or
parameters

// use properties

string uname = emp2.Username;
Console.WriteLine ("Email address for Susan is {0}", emp2.Email);
emp?2. PhoneNumber = "5678";

H : v e
Static properties c

e Can encapsulate class variables in static
properties
e Example — MaxEntries property in TimeSheet

private static int maxEntries;

public static int MaxEntries
{
get { return TimeSheet.maxEntries; }
set { TimeSheet.maxEntries = value; }

3

TimeSheet.MaxEntries = 100;

Object Oriented Software Development 3. Creating C# classes
(Geu 36

12

[S
¥

Comments -

e Code comments

e Comment line starts with //

e To help programmer reading code
e XML comments

e Comment line starts with ///

e XML describes purpose, parameters, return types,
etc

e To help programmer reusing code
e Used in documentation/VS object browser

Object Oriented Software Development 3. Creating C# classes
(Geu

8/31/2012

LR

XML comments -

/// <summary>
/// records an overtime entry in a specified time sheet
mmary>

m name="tir et">the time sheet</parar
n name="} irs">the number of hours to record</parar
ram name=" nd">true if overtime worked at weekend
weekend hours count as doub
public void RecordOvertime (Tim
bool isWeekend)

ime</param

timeSheet, int hours,

Object Oriented Software Development 3. Creating C# classes
(Geu

o,

o

Members -

e The following are collectively known as the
members of a class
e Properties
e Methods
e Events (we’ll look at these later)

Object Oriented Software Development 3. Creating C# classes
(Geu

13

R

)

Further reading -

e C# classes can have some features which
are not found in other OO languages
e Events, delegates, indexers
e We will look at some of these later on as we need

them

e MSDN has information on these
[]

e The following article is closely related to this
chapter

Object Oriented Software Development 3. Creating C# classes
(Geu

8/31/2012

Key OO concepts -

e Code-reuse
e Encapsulation
e Information hiding

Object Oriented Software Development 2.C# object oriented programming basics
(Geu

N

What’s next? i

e We will look in more detail at C# and .NET
types and the way in which variables in a
.NET program are stored

Object Oriented Software Development 3. Creating C# classes
(Geu

14

