
10/17/2011

1

Object Oriented Software
Development

5. Interfaces, polymorphism and , p y p
inheritance

Types of interface

The word “interface” has more than one
meaning in programming
User interface

The way in which the user interacts with the
program

Programming interface
The way in which software components in an
application interact with each other

We are looking at the latter here, and will look
at the former later on

Object Oriented Software Development 5. Interfaces, polymorphism and inheritance
2

Interfaces example

InterfaceDemo project

Employee.cs
ITimeSheet.csITimeSheet.cs
DatabaseTimeSheet.cs
FileTimeSheet.cs

Object Oriented Software Development 5. Interfaces, polymorphism and inheritance
3

10/17/2011

2

The interface provided by a
component

In previous examples we saw an Employee
class which uses a TimeSheet object
Method parameter of type TimeSheet
Within its RecordOvertime method an
Employee calls the AddEntry method of the
TimeSheet object
Employee only needs to know that the
TimeSheet class provides a method of that
name, and the signature of the method

Object Oriented Software Development 5. Interfaces, polymorphism and inheritance
4

The interface provided by a
component

Employee does not need to know anything
about how the AddEntry method works
Details are hidden behind the class interface
Details of how AddEntry works could be y
changed without affecting Employee
If a programmer wants to use the TimeSheet
class in another class, only needs to know
the class interface

Object Oriented Software Development 5. Interfaces, polymorphism and inheritance
5

Documentation of interface

Good documentation makes it easy for
programmer to understand the interface of a
class and how to use it
XML comments
help to make
documentation
useful

Object Oriented Software Development 5. Interfaces, polymorphism and inheritance
6

10/17/2011

3

Programming to an interface

Employee doesn’t care about the details of a
TimeSheet, just the interface
Make this explicit by defining the interface as
an item in its own right
Convention (in .NET anyway) is to name the
interface with an I - ITimeSheet
Refer to the interface name, not the actual
object type

Object Oriented Software Development 5. Interfaces, polymorphism and inheritance
7

Defining an interface

Interface definition

Use ITimeSheet as reference type

Object Oriented Software Development 5. Interfaces, polymorphism and inheritance
8

method is empty – no code block

Defining properties in an interface

A property is defined in an interface by
specifying the property type, and empty get
and/or set declarations

Object Oriented Software Development 5. Interfaces, polymorphism and inheritance
9

10/17/2011

4

Rules for interfaces

Interfaces can contain:
Methods – declaration only
Properties – declaration only
Events

Interfaces can’t contain
Instance variables
Constants
Constructors
Static members
Access modifiers

Object Oriented Software Development 5. Interfaces, polymorphism and inheritance
10

Implementing an interface

Interface doesn’t actually do anything – need
to create class which implements the
interface
Must provide implementation for all members
(methods/properties) defined in the interface
Class which implements ITimeSheet must (at
least) provide a method called AddEntry with
the signature defined in ITimeSheet
Must provide code block for method

Object Oriented Software Development 5. Interfaces, polymorphism and inheritance
11

Implementing an interface
“implements ITimeSheet”

class can have fields,
constructors, etc

Object Oriented Software Development 5. Interfaces, polymorphism and inheritance
12

method has code block

10/17/2011

5

Implementing multiple interfaces

A class can implement more than one
interface
Class must provide implementations of all the
methods declared in all the interfaces it
implements

Object Oriented Software Development 5. Interfaces, polymorphism and inheritance
13

Interface as a contract

A contract is an agreement
By implementing an interface, a class agrees
that it will provide the defined members
This class can then be used by other classes y
with confidence because they know that it
has agreed to provide the required members
Employee can use any class which
implements ITimeSheet in the knowledge that
it will have AddEntry method

Object Oriented Software Development 5. Interfaces, polymorphism and inheritance
14

Reference and runtime types

Method definition in Employee

reference type is ITimeSheet

Method call in Program

Object Oriented Software Development 5. Interfaces, polymorphism and inheritance
15

create DatabaseTimeSheet
object at runtime

pass DatabaseTimeSheet object as
parameter at runtime – implements
ITimeSheet

can call AddEntry because we
know runtime type must have
agreed to provide this method

10/17/2011

6

Interface polymorphism

Polymorphism means “many forms”
Reference to an interface type can point, as
the program runs, to any object of a type
which implements that interface
Can pass any object which implements
ITimeSheet as a parameter to
RecordOvertime method in Employee
Can declare a variable of type ITimeSheet
and set it to an object of any type which
implements ITimeSheet

Object Oriented Software Development 5. Interfaces, polymorphism and inheritance
16

Interface polymorphism

alternative implementations
of a time sheet

interface as reference type

Object Oriented Software Development 5. Interfaces, polymorphism and inheritance
17

can pass any of these objects at runtime
when parameter type is ITimeSheet

interface can be implemented
by class or struct

Advantages of using interfaces

Application code written based on the
functionality guaranteed by interface rather
than functionality of a particular class
Reduces code dependencies
Code standardisation
Easier to write reusable code

Interfaces are used extensively in the .NET
Framework library

Object Oriented Software Development 5. Interfaces, polymorphism and inheritance
18

10/17/2011

7

Inheritance

Often have classes which have some
common features

e.g. different kinds of employee –
SalariedEmployee, HourlyPaidEmployee

These are more specific versions of
Employee

“is-a” relationship – SalariedEmployee is a type of
Employee
They will share some common features
Each will require some specific features

Object Oriented Software Development 5. Interfaces, polymorphism and inheritance
19

Inheritance example

InheritanceDemo project

Employee.cs
SalariedEmployee.csSalariedEmployee.cs
HourlyPaidEmployee.cs

Object Oriented Software Development 5. Interfaces, polymorphism and inheritance
20

Inheritance hierarchy

base class or
superclass

inheritance relationships

generalised

Object Oriented Software Development 5. Interfaces, polymorphism and inheritance
21

derived classes
or subclasses

inheritance relationships

specialised

inherits all fields and methods from base
class and adds payGrade field and
PayIncrement method

inherits all fields and methods from base
class, adds RecordTime method and provides
specialised version of Email method

10/17/2011

8

Inheritance - object diagram

Instance of subclass has all fields defined in
subclass and all fields defined in superclass
No actual instance of superclass at runtime

Object Oriented Software Development 5. Interfaces, polymorphism and inheritance
22

Inheritance hierarchies

A class can have many subclasses
A class can only have one superclass

No multiple inheritance (in C# anyway)
Compare this with implementing interfaces

Subclass can itself have subclasses
Subclass can:

Inherit members of superclass
Add new members
Override members of superclass

Object Oriented Software Development 5. Interfaces, polymorphism and inheritance
23

Advantages of using inheritance

Reduced code duplication
Increased code reuse
Models real-world situations
PolymorphismPolymorphism

Inheritance is used extensively in the .NET
Framework library

Object Oriented Software Development 5. Interfaces, polymorphism and inheritance
24

10/17/2011

9

.NET base types

All .NET types are derived from
System.Object class
All .NET value types are derived from
System.ValueType class
System.ValueType is a subclass of
System.Object
But, inheritance from structs is not allowed

Object Oriented Software Development 5. Interfaces, polymorphism and inheritance
25

Implementing inheritance
protected – means variables are accessible from
subclasses, but not from other classes

SalariedEmployee
inherits all of these

Object Oriented Software Development 5. Interfaces, polymorphism and inheritance
26

“extends Employee”

also define public PayGrade property,
other properties inherited

Subclass constructor

Call base class constructor to do initialisation
of inherited fields

Only need to write code for specific subclass
initialisation

Object Oriented Software Development 5. Interfaces, polymorphism and inheritance
27

10/17/2011

10

Inherited methods

SalariedEmployee and HourlyPaidEmployee
both inherit Move method from Employee
Can call Move method on instance of
subclass

Object Oriented Software Development 5. Interfaces, polymorphism and inheritance
28

Added methods

HourlyPaidEmployee has additional method
RecordTime, which is not in Employee
SalariedEmployee does not have this method

Object Oriented Software Development 5. Interfaces, polymorphism and inheritance
29

gives compiler error – emp2 is an
instance of SalariedEmployee

Overriding a method

HourlyPaidEmployee has a specialised
version of the Email method
Constructs email address in a way which is
specific to this type of employee
Need to override the Email method

Object Oriented Software Development 5. Interfaces, polymorphism and inheritance
30

10/17/2011

11

Overriding a method
Declare method as virtual in base class

Declare method as override in subclass

Object Oriented Software Development 5. Interfaces, polymorphism and inheritance
31

runs method defined in HourlyPaidEmployee

runs method defined in Employee

Abstract classes

It is likely in the example that every employee
will be one or other of the specific kinds
Can declare Employee as an abstract class

This means that no instances can be created
Abstract classes are meant to be base
classes which provide basic functionality to
be inherited by concrete classes

Object Oriented Software Development 5. Interfaces, polymorphism and inheritance
32

Sealed classes

If you don’t want a class to be subclassed,
you can declare it as a sealed class

Can also define methods as sealed when
class is not sealed
Subclasses cannot override sealed methods

Object Oriented Software Development 5. Interfaces, polymorphism and inheritance
33

10/17/2011

12

Inheritance polymorphism

Similar to interface polymorphism
Reference to any type can point, as the
program runs, to any object of a type which
derives from that type
Can pass an instance of any subclass of
Employee to AddEmployee method in
Department
Can declare a variable of type Employee and
set it to refer to an instance of any subclass
of Employee

Object Oriented Software Development 5. Interfaces, polymorphism and inheritance
34

Inheritance polymorphism

base class as reference type

Object Oriented Software Development 5. Interfaces, polymorphism and inheritance
35

can pass any of these objects at runtime
when parameter type is Employee

Polymorphism and methods

Example:
reference type is Employee
runtime object type is HourlyPaidEmployee

You cannot call a method which is not
defined in the object’s reference type

Object Oriented Software Development 5. Interfaces, polymorphism and inheritance
36

runs method defined in runtime type*

error – method not defined in reference type

*the behaviour is different if you use the word new instead of override in the method
definition – look up the C# reference and try to find out why

10/17/2011

13

Casting

Solution – cast reference to the runtime type

cast operator

Object type doesn’t change, only reference
type

Cast must be valid
Object Oriented Software Development 5. Interfaces, polymorphism and inheritance

37

p

new reference to same object

Upcasting and downcasting
Upcast (widening)

Cast subclass to base class
Automatic

Downcast (narrowing)
Cast base class to subclass
Need explicit cast

Object Oriented Software Development 5. Interfaces, polymorphism and inheritance
38

Invalid casts

In previous slide, compiler reported errors for
invalid casts
Can have code in which each operation is
within the rules, but the result at runtime is
invalid
This code compiles, but causes a runtime
error – why?

Object Oriented Software Development 5. Interfaces, polymorphism and inheritance
39

10/17/2011

14

Prefix and As casting

Previous example was prefix casting
reliable casting
reports error (throws exception) if cast is invalid

Can use As casting
fast casting
null reference if cast is invalid – no error reported

Specific to .NET!

Object Oriented Software Development 5. Interfaces, polymorphism and inheritance
40

When not to use inheritance

Inheritance is one of the cornerstones of
object oriented programming
But...
It is not always the right solution for modelling y g g
a real-world situation
General rule: “don’t use inheritance to
model roles”

Object Oriented Software Development 5. Interfaces, polymorphism and inheritance
41

Roles

Could think of the employees example as
follows:

Michael is an employee whose role in the
company is an hourly paid worker
Susan is an employee whose role is a
salaried worker

Object Oriented Software Development 5. Interfaces, polymorphism and inheritance
42

10/17/2011

15

Changing roles

What if Susan’s role is to change, and she is
to become an hourly paid worker?
We would have to create a whole new
HourlyPaidEmployee object to represent her,
and remove the existing SalariedEmployee
object
No representation of the fact that this is still
the same person
Inheritance is a static structure

Object Oriented Software Development 5. Interfaces, polymorphism and inheritance
43

A better way - composition

Instead, we could have one object to
represent the entity (the employee in this
case) and one to represent the role
Combine these to represent Susan
Can change the combination at runtime
Combine Susan’s Employee object with a
different role object to change role
Employee could have more than one role
Composition is a dynamic structure

Object Oriented Software Development 5. Interfaces, polymorphism and inheritance
44

Composition

roles

provides payGrade field and PayIncrement
method and delegates other fields and
methods to entity

provides RecordTime method and specialised
version of Email method and delegates other
fields and methods to entity

Object Oriented Software Development 5. Interfaces, polymorphism and inheritance
45

entities

“has-a” relationships

10/17/2011

16

Composition - object diagram

Instances of role and entity exist at runtime

Object Oriented Software Development 5. Interfaces, polymorphism and inheritance
46

Composition compared to
inheritance

Advantages
dynamic structure
models changing roles
models multiple roles

Disadvantages
more objects in memory
code can be harder to understand
Polymorphism doesn’t work (?)

Which is better in this example?

Object Oriented Software Development 5. Interfaces, polymorphism and inheritance
47

Composition example

CompositionDemo

HourlyPaidEmployee.cs
SalariedEmployee.csSalariedEmployee.cs
Employee.cs

Object Oriented Software Development 5. Interfaces, polymorphism and inheritance
48

10/17/2011

17

Implementing composition

Employee class unchanged, except methods
are not declared virtual
Role classes have instance variable of type
Employee

Object Oriented Software Development 5. Interfaces, polymorphism and inheritance
49

Delegation of properties/methods

Pass a request for EmployeeId property to
employee object

Pass a call to Move on to employee object

Object Oriented Software Development 5. Interfaces, polymorphism and inheritance
50

Constructors

Create Employee object then assign it to role
object

Object Oriented Software Development 5. Interfaces, polymorphism and inheritance
51

10/17/2011

18

Changing role

Create new role object and assign existing
Employee object to it
Could assign another Employee to existing
role or set it to null

Object Oriented Software Development 5. Interfaces, polymorphism and inheritance
52

Polymorphism

How does the example code achieve the
advantages of polymorphism even though we
have abandoned inheritance?

Object Oriented Software Development 5. Interfaces, polymorphism and inheritance
53

Further reading

The following links lead to useful articles on
interfaces in C#:

http://www.c-
sharpcorner.com/UploadFile/rmcochran/csharp_in
terrfaces03052006095933AM/csharp interrfacesterrfaces03052006095933AM/csharp_interrfaces.
aspx?ArticleID=cd6a6952-530a-4250-a6d7-
54717ef3b345
http://www.csharp-
station.com/Tutorials/Lesson13.aspx

Object Oriented Software Development 5. Interfaces, polymorphism and inheritance
54

10/17/2011

19

What’s next?

We will go on to look at structures for holding
collections of similar objects, including arrays
and the .NET collection types
Some of the concepts introduced in this
chapter will be very useful when looking at
collections

Object Oriented Software Development 5. Interfaces, polymorphism and inheritance
55

