Object Oriented Software @U
Development e

6. Arrays and collections &
o e

10/7/2011

One-to-many relationships

e A department can have many employees in it
e One-to-many “has-a” relationship

e “has-a” relationship is "
implemented with instance variable

e This variable must be able to hold a
collection of Employee objects

= Object Oriented Software Development 6. Arrays and collections
Tal

Collections of data

e Most software applications need to work with
collections of similar objects, for example:
e List of transactions to display in a bank
application
e List of sprites in a game
e Often need to perform actions such as:
e Listing all the objects in a collection
e Adding and removing objects
e Finding a specific object in a collection

o,

Arrays

10/7/2011

e Simple way of storing collection of objects of
the same type

= new int[10];_

e Contents can be any type, including
reference types and value types
e Arrays are stored on the heap

e If content type is a reference type, the array
stores references to objects

= Object Oriented Software Development 6. Arrays and collections
Tal

Looping through an array

e for and foreach loops:

e foreach loop works with any collection which
implements an interface called IEnumerable

e We will look at this again later

= Object Oriented Software Development 6. Arrays and collections
Tal

=,

Arrays and polymorphism -

e An array can store instances of its declared
type or subclasses of that type

[] employeea = new [10]:

t grade = semp.PayGrade;

e May need to cast to get object back out as its
original type

= Object Oriented Software Development 6. Arrays and collections
Tal

.v‘ “4“

More than one dimension

10/7/2011

e Arrays can have two dimensions

e Can have more than two dimensions

e Can be rectangular or jagged
e Jagged array = array of arrays
e Arrays may be different sizes

Object Oriented Software Development 6. Arrays and collections

-

=,

Limitations of arrays

e Once created, the size of an array is fixed

e Array does not provide ways of adding,
removing or finding elements

e To use an array you need to write code to
access elements

e Often better to use classes which are
designed to store data and provide methods
for accessing the data

e Data structures, or collections

=
(51

Object Oriented Software Development 6. Arrays and collections

-

=,

Abstract data types

e An ADT is a specification for the set of
operations which can be performed on the
data stored in a data structure

e “Abstract” because the specification is
independent of the concrete implementation

e Could have many implementations of the
same ADT which work differently “under the
hood”

o We will look first at the list ADT and two
ways of implementing it

o
(51

Object Oriented Software Development 6. Arrays and collections

‘g.i_\d..

List

e Alist is a sequential data structure

e Addition and removals can be made at any
position in the list

e Lists are normally in the form of a,,a,,a;.....a,.
The size of this list is n.

e The first element of the list is a;,and the last
elementis a,

e The position of element & in a list is i.

= Object Oriented Software Development 6. Arrays and collections
Tal

10/7/2011

,‘24;&.

List operations

e A list data structure should be able to provide
the following operations:
e Create a list
e Find an item in the list
e Insert an item in the list
e Modify an item in the list
e Delete an item from the list
e Check whether list is full/empty
e Traverse the list

= Object Oriented Software Development 6. Arrays and collections
Tal

Lists example

e CollectionsDemo solution
e CollectionsDemo and SimpleCollections
projects

e Data structures in separate project from program
— can easily be reused by other programs

e SimpleCollections is a class library project
e CollectionsDemo — Program.cs

e SimpleCollections — ISimplelList.cs,
SimpleArrayList.cs, SimpleLinkedList.cs

[l Object Oriented Softw
Tal

Implementing a list

e \We can express
these requirements
as an interface

e Lists will implement
this interface

= Object Oriented Software Development 6. Arrays and collections
Tal

10/7/2011

Data type of items i

e Note that in interface code, the item type is
Object
e Polymorphism — each list item can be:
e An instance of Object
e An instance of any type which derives from
object...
e ...which is essentially any type at all as all types in
.NET derive from Object

e Reusable — can be used to store any type of

items in any application

= Object Oriented Software Development 6. Arrays and collections
Tal

Implementation details

e There are two common ways of actually
storing the data in a list

e ArrayList
e Items are stored in an array

e LinkedList
e |tems are stored as a chain of connected nodes

e Each node has a data item and a reference to the

next node
LinkedList. Head Dataltem NextNode Dataiterm NextNode Dataltem NextNode

(e}t Te}ttr [ett Te]

= Object Oriented Softw
Tal

34_\‘..

Does it matter which one?

e Both versions can be written to implement the
interface, and both will work perfectly well

e In fact, we don’t even need to write our own
implementations as the .NET Framework
library already has a wide selection of tried
and test collection classes, including lists

e But, different implementations have different
performance in particular situations

e Need to understand characteristics of

10/7/2011

structures to make the best choice

P Object Oriented Software Development 6. Arrays and collections
(51 o

-

=,

Simple implementations

e We will look at the code for simplified
implementations of ArrayList and LinkedList

e This will help us to understand how the two
versions work and identify where there might
be performance differences

e Wouldn't use these in real programs —
Framework versions are more complex, but
more capable and robust

e Use Framework classes unless you need

specific custom functionality

o Object Oriented Software Development 6. Arrays and collections
(o 17

=,

SimpleArrayList

e Items stored in array of type Object

e Capacity is the number of items which can be
stored

e Size is the number of items currently stored

constructor

instance variables

Object Oriented Software Development 6. Arrays and collections

L

Adding items to SimpleArrayList

10/7/2011

e Adding a new item at the end of the list is
simple

e Number of items stored so far = size

e Index of last stored = size - 1

e Store the new item at index = size

public void Add(

= Object Oriented Software Development 6. Arrays and collection:
(ral

b

Adding items to SimpleArrayList

e Adding a new item at a specified index
involves more work

e Need to shuffle items up to make space

e[t fale]e o]]

= Object Oriented Software Development 6. Arrays and collections
(ral

€ o

Adding items to SimpleArrayList

Start at first empty position (size)

Copy previous entry into current one

Move down one position

Copy previous entry into current one

Repeat until target . o)
position reached PR veRd Addiing Andes
e Putnew itemin s
target position

o= Object Oriented S

Sages D

SimpleLinkedList

e Each item is stored in an object of type Node
e Contains item and reference to next Node

e List only needs reference to first Node, can
find others from there by following references
e No capacity limit, list can grow

Node class

public class reference to head node, initially
{ set to null by constructor

Object Oriented Software Development 6. Arrays and collections

10/7/2011

€ o

Adding items to SimpleLinkedList e

e To add a new item at a specified index break
chain at target position and insert new node

Datatien Nevivode Dutaniern Nexivode Datsttern Nexthode
o | [& [
(o kb, [o k-t Tt Jel]
! Indext Incex 1 meex2 NEW item to be
probe follows AT AP o)
N . / aaaea at inaex £
chain to find I_‘_.-
target node = ® | | ® |
ot Newhode Datatiemn Nextiode
Dataliom NexiNode Datatiens NextNode Dataliom Nexthode
| - - | & | ® |
® ° | new item inserted
& Object Oriented Software & oo clectors

€ o

Adding items to SimpleLinkedList e

e Special case when inserting first item in empty
list
e Simply set head to point to new node

) i head of list, initially null

,

N\
(@ b Te]
e Adding at end is not a particularly special case

e Need to probe all the way along the list to find last
item then insert new node

o= Object Oriented S

10/7/2011

Adding items to SimpleLinkedList y
e Special case when inserting at start of list
|.|.‘_..|.,—;:I .|_; i‘!
[& T e
I Y P I o S N 2 o
N, ~
NN
® " -

. o e
Adding items to SimpleLinkedList -
e Implementation for general case

k tHod

-

Other operations i

e How would deleting be implemented in each
case?

e How would searching be implemented?
e How would modifying be implemented?

e Look at sample code to see how other
operations are implemented

= Object Oriented Software
(ral

.v‘ “4“

Which list should we use?

10/7/2011

e Need to judge likely effect of list
characteristics on performance
e Real applications may store a large number of data

e Consider the way the data will be added and
accessed

o Will new items be added frequently?

e Where in the list will they be added?

e Will we need to access items frequently?

e Where in the list will we need to access items?

Object Oriented Software Development 6. Arrays and collections

ArrayList

e Time to access does not depend on the size
of the list

e To add an element at the end of the list, the
time taken does not depend on the size

e Time taken to add an element at any other
point in the list does depend on the size

e Additions near the start of the list take longer
than additions near the middle or end

e Deletes near the start of the list take longer

o Object Oriented Software Development 6. Arrays and collections
(o 2

LinkedList .

e Time to access an element depends on the
index because each element of the list must
be traversed until the required index is found

e Time to add an element does not depend on
the size of the list, as no shifts are required

e Time to add does depend on the index

e Additions near the end of the list take longer
than additions near the middle or start

e Deletes near the end of the list take longer

o Object Oriented Software Development 6. Arrays and collections
(o 0

10

o,

- =

Variations on LinkedList

10/7/2011

e Circularly linked list
e The tail of the list always points to the head
e Can start anywhere and reach whole list

Datallam Nosiode Dataftern Nexthods Datallam Necthiods

(o bt . [®FF+ TokFt T[]

e Doubly linked list
e Permits searching in both directions

Datalem Froviode NextNode — Datafem Fravivoge NestNode

N S L L o T L N

.

= Object Oriented Software Development 6. Arrays and collections
Tal

Capacity of lists

e LinkedList is dynamic
e No limit on capacity

e ArraylList is static
e Capacity defined by length of underlying array
e Could be a big disadvantage, but...

e .NET Framework implementation of ArrayList
can resize itself dynamically

e When array gets close to being full the
ArrayList creates a new, larger array and
copies items into it

= Object Oriented Software
Tal

Traversing a collection

e Traversing means passing through the
collection visiting each item in turn

e The details of how this works depend on the
way the collection is implemented

e Traversing an ArrayList simply involves
passing along the array

e Traversing a LinkedList involves following
references to reach each node

e Collection should provide a way of traversing

= Object Oriented Software Development 6. Arrays and collections
Tal

11

o ey

foreach loop and IEnumerable

10/7/2011

e In C# the foreach-in loop is the usual way to
traverse a collection

e Collection needs to provide help for the
foreach loop to work

e Collection must implement IEnumerable
interface

Object Oriented Software Development 6. Arrays and collections

-

=,

IEnumerable interface

e Defines a contract

e If a collection type implements IEnumerable
interface then it agrees to provide the
mechanism which can enumerate, or loop
though, the collection

e Defines one method — GetEnumerator,
which returns an instance of a class which in
turn implements IEnumerator

e Most .NET collection types and arrays
implement this interface

Object Oriented Software

=
(51

=,

Enumerators

e The IEnumerator interface defines an
enumerator object which traverses a
collection in a way specific to that collection

e Enumerator object can be used by foreach
loop or can be used directly in your code

e Defines:

e MoveNext method
o Reset method
e Current property

e See example in lab exercises

o
(51

Object Oriented Software Development 6. Arrays and collections

12

‘g.i_\d..

More data structures

e Lists are suitable for many applications

e However, there are other data structures
which have characteristics which make them
more suited to specific applications,

10/7/2011

including:
e Stack
e Queue
e Dictionary
=N
Stack ADT -

e A stack is a special case of a list

e Addition and removals can only be made at
one end

e Last-in, first-out (LIFO)

e Push - adds a new item onto the stack

e Pop — removes and returns last item added
e Can be implemented with array or linked list

= Object Oriented Software Development 6. Arrays and collections
Tal

Stack applications

e Page visited history in a Web browser
e Undo sequence in a text editor

e Reversing a string

e Method calls — memory stack

e Balancing symbols — e.g. check for matching
brackets in a C# code file

= Object Oriented Software Development 6. Arrays and collections
Tal

13

‘g.i_\d..

Queue ADT)

10/7/2011

e A queue is also special case of a list

e Addition can only be made at the tail and
removals made at the head

e First-in, first-out (FIFO)
e Enqueue - adds a new item onto the queue

e Dequeue — removes and returns first item
added

e Can be implemented with array or linked list

= Object Oriented Software Development 6. Arrays and collections
Tal

N

*] =,

Queue applications

e Waiting lists
e Message queues
e Access to shared resources, e.g. printer

e Buffers for transferring data asynchronously
e.g., file 10, sockets

= Object Oriented Software Development 6. Arrays and collections
Tal -

Dictionary ADT

e A dictionary is a searchable collection of
key-item pairs

e Also known as map, associative list

e Keys are used to locate items

e Collection can be sorted or unsorted

e May or may not allow more than one item
with the same key — depends on
implementation

= Object Oriented Software Development 6. Arrays and collections
Tal

14

‘g.i_\d..

Dictionary operations

10/7/2011

e Put(key, item) - add a new key/item pair

e Get(key) — get the item with the specified key

e Set(key, item) — set the item for the specified
key

e Remove(key) — remove the item with the
specified key

e ContainsKey(key) — check whether the
specified key exists

N

*] =,

Dictionary data types

e Most reusable case is when key and item
data types are both Object

e Can store any type and use any type as key
because of polymorphism

e Sometimes it is convenient to have a
customised implementation restricted to
specific data types

e e.g. .NET Framework includes a StringDictionary
class

Boxing/unboxing with collections

e Collections often have item type Object

e Don't need to create a separate collection
class for each data type which might be
stored

e A consequence of this is that value types are
converted to object references (boxed) when
stored in such a collection

boxing

unboxing — cast to value type

= Object Orient
(73

ted Software Development 6. Arrays and collections

15

o,

- =

Disadvantages of boxing

10/7/2011

e Overhead of creating object references
affects performance

e Need to write code to explicitly cast to value
type

e Not type-safe — can add the “wrong” type of
objects into the collection, compiler will not
pick this up

= Object Oriented Software Development 6. Arrays and collections
Tal

Generics

e Generic collection classes give the best of
both worlds
e One class allows storage of any data type
e Can specify what type it is to hold

e Type-safe — compiler will not allow code which
stores wrong type
int> =gal %~ . same collection class

used for different types
. no boxing needed

= =gal.Get(0): hounboxing, no cast needed

= Object Oriented Software Development 6. Arrays and collections
Tal P

Generic list example

e CollectionsDemo solution
e SimpleCollections project

e SimpleGenericArrayList.cs

16

B

Creating a generic collection class

e Declare placeholder for generic type — T

e Placeholder will be replaced with specific type
when application is compiled

e References to T instead of Object

—

becomes Employee[] entries when compiled

generic type

sga =

N specific type

= Object Oriented Software Development 6. Arrays and collections
(ral

10/7/2011

€ o

Generic collection class members

} i references to T instead of Object

= Object Oriented
(ral

€ o

Generic collection class members

e Can't generally set a reference of generic
type to null

e Type at compile time might be a value type
which can’t be null

e Use default instead — null for reference type,
default value for value type

puklic

index] ;

= Object Oriented Software Development 6. Arrays and collections
(ral o

17

‘g.i_\d..

Framework collections

10/7/2011

e The .NET framework provides a range of
collections in three namespaces

e System.Collections

e System.Collections.Generic
e generic versions — names not always consistent
with non-generic variants, e.g. ArrayList is
equivalent to List<T>
e System.Collections.Specialized

e arange of collections with specialized
characteristics

= Object Oriented Software Development 6. Arrays and collections
Tal

N

*] =,

Framework collections

e Use framework collection where possible
instead of writing your own

e Consider characteristics and likely impact on
performance when choosing

e Use generic collections where possible

e Only create custom collections to match very
specific, unusual requirements

= Object Oriented
Tal

Framework collections example

e FrameworkCollectionsDemo solution

e ListGenericDemo project
e Program.cs

e DictionaryGenericDemo project
e Program.cs

= Object Oriented Software Development 6. Arrays and collections
Tal i

18

Using List<T>

e Create

e Add

e Get value
o |terate
for *h it
Writeline (" ", dt.ToShortDatestring())r

10/7/2011

Using Dictionary<T,U> -
e Create
cing, double> dict = new <steing, doubles();
Note that .NET implementation
°
Add uses Add rather than Put, and
dict.Add("Chai”, 18.0)f array-like index notation for
lookup rather than Get
e Get value
& Object Oriented Software Development 6 Arrays and calections

Using Dictionary<T,U>

o |terate

e lterate through Dictionary as KeyValuePair
collection could also use implicit type: var entry in dict

e Get dictionary values from Values property(can
get Keys similarly)

= Object Oriented Software Development 6. Arrays and collections
(ral e

19

Further reading

10/7/2011

e There are other collection types
e Many sources of information online

e Recommended:

e An Extensive Examination of Data Structures
using C# 2.0 (MSDN)

= Object Oriented Software Development 6. Arrays and collections
Tal

Further reading

e The code in the CollectionsDemo download
contains example implementations of the
following collection types:

e Stack

e Queue

e Dictionary — see extra slides for information on
ways to implement a Dictionary

e Implementation details of these will not be in
the exam

= Object Oriented Software Development 6. Arrays and collections
Tal i

What's next?

e We will go on to look in detail at how to
implement a UML model using C# classes,
and how collections can help with this

20

